仪器分析法选介.ppt
《仪器分析法选介.ppt》由会员分享,可在线阅读,更多相关《仪器分析法选介.ppt(189页珍藏版)》请在三一办公上搜索。
1、无机及分析化学第九章 仪器分析法选介,9.1 紫外可见分光光度法 9.2 原子吸收分光光度法 9.3 电势分析法 9.4 色谱分析法,学习要求,1.掌握电位分析法的基本原理、指示电极和参比 电极的含义。了解各类电极的结构和机理。2.掌握测定溶液pH值的方法。掌握直接电位法 测定离子浓度及确定电位滴定终点的方法。3.掌握原子吸收光谱分析的基本原理和定量分析 方法。了解原子吸收分光光度计的主要构造和 应用范围。4.掌握色谱分离的原理、分类及定性、定量方法。了解评价分离效率的指标,了解气相及高效液 相色谱仪的构造和各自的应用范围。,仪器分析的基本特点,Instrumental Analysis以被测
2、物质的物理及物理化学性质为基础的分析方法从二十世纪中叶开始,仪器分析得到迅速的发展,已广泛应用于现代科学技术的各个领域。多属微量分析,快速灵敏,相对误差较大,但绝对误差不大。仪器分析法的种类很多。有光谱法、色谱法、电化学分析法等。本章只介绍电位分析法,原子吸收分光光度法、气相色谱法和液相色谱法这四种常用的仪器分析法。,9.1 紫外可见分光光度法(Ultraviolet and Visible Spectrophotometry),9.1.1 概述9.1.2 光吸收的基本定律 显色反应及其影响因素9.1.4 紫外可见分光光度计 紫外可见分光光度测定的方法9.1.6 分光光度法的误差和测量条件的选
3、择9.1.7 紫外可见分光光度法应用实例,9.1.1 概述,吸光光度法是基于物质对光的选择性吸收而建立起来的分析方法,包括比色法、可见及紫外吸光光度法及红外光谱法等。特点:灵敏度高(测定下限可达105106mol/L)准确度高(满足微量组分的测定要求)简便快速(在适当条件下,不经分离可直接测定)应用广泛(无机、有机成分、农药残留、生物体内的微量成分、药物分析、环境卫生分析),光是一种电磁波。所有电磁波都具有波粒二象性。光的波长、频率与光速c的关系为:光速在真空中等于2.9979108ms-1。光子的能量与波长的关系为:式中E为光子的能量;h为普朗克常数,为6.62610-34JS。,光的基本性
4、质,物质的颜色与光的关系,单色光(monochromatic light)只具有一种波长的光。混合光 由两种以上波长组成的光。白光是由红、橙、黄、绿、青、蓝、紫等各种色光按一定比例混合而成的。物质的颜色是由于物质对不同波长的光具有选择性的吸收作用而产生的。例如:硫酸铜溶液因吸收白光中的黄色光而呈蓝色;高锰酸钾溶液因吸白光中的绿色光而呈紫色。物质呈现的颜色和吸收的光颜色之间是互补关系。,表9-2 物质颜色和吸收光颜色的关系 物质颜色 吸收光颜色 吸收光波/nm 黄绿 紫 400 450 黄 蓝 450 480 橙 绿蓝 480 490 红 蓝绿 490 500 紫红 绿 500 560 紫 黄绿
5、 560 580 蓝 黄 580 600 绿蓝 橙 600 650 蓝绿 红 650 760,当一束平行的单色光照射到有色溶液时,光的一部分将被溶液吸收,一部分透过溶液,还有一部分被器皿表面所反射。设入射光强度为I0,透过光强度为It,溶液的浓度为c,液层宽度为b,经实验表明它们之间有下列关系:(9-1),朗伯比尔定律,9.1.2 光的吸收基本定律,透光度 T(Transmittance),透光度定义:,T 取值为0.0%100.0%,全部吸收,T=0.0%,全部透射,T=100.0%,透光度、吸光度与溶液浓度及液层宽度的关系(9-2)A 吸光度 T 透光度 K-吸光系数,与入射光波长、溶液的
6、性质及温度有关。当c的单位为gL-1,b的单位为cm时,k以a表示其单位为Lg-1cm-1,此时式(9-1)变为(9-3),如果浓度c的单位为molL-1,b的单位为cm,这时k常用 表示。称为摩尔吸光系数(molar absorptivity),其单位为Lmol-1cm-1,它表示吸光质点的浓度为1molL-1,溶液的宽度为1cm时,溶液对光的吸收能力。值越大,表示吸光质点对某波长的光吸收能力愈强,故光度测定的灵敏度越高。值在103以上即可进行分光光度法测定,高灵敏度的分光光度法可达到105106。式(9-3)可写成为:A=bc(9-6)与a的关系为:=Ma(9-7)式中M为吸光物质的摩尔质
7、量,朗伯比尔定律的几种形式,入射光强度,透射光强度,透光度,吸光度,摩尔吸光系数,L mol 1 cm-1,溶液厚度,溶液浓度,物理意义:一定温度下,一定波长的单色光通过均匀的、非散射的溶液时,溶液的吸光度与溶液的浓度和厚度的乘积成正比。,例9-1 浓度为25.0g/50mL的Cu2+溶液,用双环已酮草酰二腙分光光度法测定,于波长600nm处,用2.0cm比色皿测得T=50.1%,求吸光系数a和摩尔吸光系数。已知M(Cu)=64.0。解:已知T=0.501,则A=lgT=0.300,b=2.0cm,则根据朗伯比尔定律 A=abc,而=Ma=64.0gmol-13.00102 Lg-1cm-1=
8、1.92104(Lmol-1cm-1),例9-2 某有色溶液,当用1cm比色皿时,其透光度为T,若改用2cm比色皿,则透光度应为多少?解:由A=-lgT=abc可得 T=10-abc 当b1=1cm时,T1=10-ac=T 当b2=2cm时,T2=10-2ac=T2,定量分析时,通常液层厚度是相同的,按照比尔定律,浓度与吸光度之间的关系应该是一条通过直角坐标原点的直线。但在实际工作中,往往会偏离线性而发生弯曲,见图中的虚线。,偏离朗伯一比尔定律的原因,单色光不纯所引起的偏离,朗伯一比尔定律只对一定波长的单色光才能成立,但在实际工作中,即使质量较好的分光光度计所得的入射光,仍然具有一定波长范围的
9、波带宽度。在这种情况下,吸光度与浓度并不完全成直线关系,因而导致了对朗伯一比尔定律的偏离。所得入射光的波长范围越窄,即“单色光”越纯,则偏离越小。,由于溶液本身的原因所引起的偏离,吸光系数k与溶液的折光指数n有关。溶液浓度在0.01molL-1或更低时,n基本上是一个常数,浓度过高会偏离朗伯-比尔定律。朗伯-比尔定律是建立在均匀、非散射的溶液这个基础上的。如果介质不均匀,呈胶体、乳浊、悬浮状态,则入射光除了被吸收外,还会有反射、散射的损失,因而实际测得的吸光度增大,导致对朗伯-比尔定律的偏离,溶质的离解、缔合、互变异构及化学变化引起的偏离 有色化合物的离解是偏离朗伯比尔定律的主要化学因素。例如
10、,显色剂KSCN与Fe3+形成红色配合物Fe(SCN)3,存在下列平衡:Fe(SCN)3 Fe3+3SCN 溶液稀释时,上述平衡向右,离解度增大。所以当溶液体积增大一倍时,Fe(SCN)3的浓度不止降低一半,故吸光度降低一半以上,导致偏离朗伯比尔定律。,显色反应及显色剂:被测元素在某种试剂的作用下,转变成有色化合物的反应叫显色反应(color reaction),所加入试剂称为显色剂(color reagent)。常见的显色反应大多数是生成配合物的反应,少数是氧化还原反应和增加吸光能力的生化反应,9.1.3 显色反应及其影响因素,显色反应的要求:选择性好 所用的显色剂仅与被测组分显色而与其它共
11、存组分不显色,或其它组分干扰少。灵敏度要足够高 有色化合物有大的摩尔吸光系数,一般应有104-105数量级。有色配合物的组成要恒定 显色剂与被测物质的反应要定量进行,生成有色配合物的组成要恒定。生成的有色配合物稳定性好 即要求配合物有较大的稳定常数,有色配合物不易受外界环境条件的影响,亦不受溶液中其它化学因素的影响。有较好的重现性,结果才准确。色差大 有色配合物与显色剂之间的颜色差别要大,这样试剂空白小,显色时颜色变化才明显。,影响显色反应的因素,显色剂的用量 显色反应一般可表示为:M+R MR 有色配合物MR的稳定常数越大,显色剂R的用量越多,越有利于显色反应的进行。但有时过多的显色剂反而对
12、测定不利。在实际工作中,常根据实验结果来确定显色剂的用量。,c(R),溶液的酸度 许多显色剂都是有机弱酸或有机弱碱,溶液的酸度会直接影响显色剂的解离程度。对某些能形成逐级配合物的显色反应,产物的组成会随介质酸度的改变而改变,从而影响溶液的颜色。另外,某些金属离子会随着溶液酸度的降低而发生水解,甚至产生沉淀,使稳定性较低的有色配合物的解离。,pH,pH1pHpH2,显色温度 有些反应需要加热。有些显色剂或有色配合物在较高温度下易分解褪色。此外温度对光的吸收及颜色深浅也有影响,要求标准溶液和被测溶液在测定过程中温度一致。显色时间 显色反应有快慢,有的有色配合物容易褪色,因此不同的显色反应需放置不同
13、的时间,并在一定的时间范围内进行比色测定。,副反应的影响 被测金属离子M与显色剂R反应,生成有色配合物MRn,此时,若M有配位效应,R有酸效应,影响M配位反应的完全程度。通常,当金属离子有99%以上被配位时,就可认为反应基本上是完全的共存离子的影响 吸光度增加,造成正干扰。被测组分或显色剂的浓度降低,引起负干扰。,9.1.4 紫外可见分光光度计,紫外-可见分光光度计基本构造,光源,单色器,样品池,检测器,信号输出,氢灯,185 350 nm;卤钨灯,250 2000 nm.,基本要求:光源强,能量分布均匀,稳定,将光源发出的连续光谱分解为单色光的装置,(比色皿)盛待测及参比溶液。光学玻璃,石英
14、,作用:将光信号转换为电信号,并放大,光电管,光电倍增管,光电二极管,表头、记录仪、屏幕、数字显示,棱镜:玻璃3503200nm,石英1854000nm光栅:波长范围宽,色散均匀,分辨性能好,常用的紫外可见分光光度计,分为单波长和双波长分光光度计两类。单波长分光光度计又分为单光束和双光束分光光度计。单波长单光束分光光度计因其结构简单、使用方便而被广泛地应用于科研和生产等领域。其中最具代表性的是751型分光光度计。,单波长单光束分光光度计,单波长双光束分光光度计,9.1.5 紫外可见分光光度测定的方法,1.标准曲线法,Blank Standard Sample Sample,2.标准对照法(直接
15、比较法)将试样溶液和一个标准溶液在相同条件测出它们的吸光度,按下式计算被测溶液的浓度。k标=k测 b标=b测 所以 要求A与c线性关系良好,被测样品溶液与标准溶液浓度接近。用一份标准溶液即可计算出被测溶液的含量或浓度,方便,操作简单。,3.吸光系数法 在没有标准品可供比较测定的条件下,按文献规定条件测定被测物的吸光度,从样品的配制浓度、测定的吸光度及文献查出的吸光系数即可计算样品的含量,因为 则样品含量,例9-4 已知维生素B12在361 nm时,a标=20.7 Lg1cm1。精确称取样品30 mg,加水溶解稀释至1000 mL,在波长361 nm下,用1.00 cm吸收池测得溶液的吸光度为0
16、.618,计算样品维生素B12的含量。解:A=a样bc则维生素B12的含量=,9.1.6 紫外可见分光光度法的误差和测量条件的选择,分光光度法的误差 溶液不遵守朗伯比尔定律所引起的误差 利用标准曲线的直线段来测定被测溶液的浓度,从而减少由入射光为非单色光引起的误差;也可以利用试剂空白和确定适宜的浓度范围来减少由溶液本身所引起的误差。光度测量误差 吸光度与透光率是负对数关系,故吸光度的标尺刻度是不均匀的。一般来说透光率为2065(吸光度为0.2-0.7)时,浓度测量的相对误差都不太大。这就是分光光度分析中比较适宜的吸光度范围。,仪器误差 比色皿的质量,检流计的灵敏度。光源不稳定、棱镜的性能、安装
17、条件及光电管的质量等都可以使分析产生误差。操作误差 由分析人员所采用的实验条件与正确的条件有差别所引起的误差。,入射光波长的选择 以最大吸收波长max为测量的入射光波长。在此波长处,摩尔吸光系数最大,测定的灵敏度最高。若干扰物在max处也有吸收,在干扰最小的条件下选择吸光度最大的波长。有时为了消除其它离子的干扰,也常常加入掩蔽剂。,吸收光谱(absorption spectrum)或吸收曲线,测定某种物质对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图。光吸收程度最大处的叫做最大吸收波长,用max表示。不同浓度的KMnO4溶液所得的吸收曲线都相似,其最大吸收波长(525nm)不变
18、,只是相应的吸光度大小不同。,吸光度读数范围的选择 透光度读数误差T是一个常数,但在不同的读数范围内所引起的浓度的相对误差却是不同的。为减小浓度的相对误差,提高测量的准确度,一般应控制被测液的吸光度A在0.20.7(透光度为65%20%)。可以通过改变称样量、稀释溶液以及选择不同厚度的比色皿来控制吸光度。,参比溶液的选择原则:使试液的吸光度能真正反映待测物的浓度。利用空白试验来消除因溶剂或器皿对入射光反射和吸收带来的误差。纯溶剂空白 当试液、试剂、显色剂均为无色时,用纯溶剂(或蒸馏水)作参比溶液。试剂空白 试液无色,而试剂或显色剂有色时,加入相同量的显色剂和试剂,作为参比溶液。试液空白 试剂和
19、显色剂均无色,试液中其它离子有色时,用不加显色剂的溶液作为参比溶液。,参比溶液的选择原则:使试液的吸光度能真正反映待测物的浓度。利用空白试验来消除因溶剂或器皿对入射光反射和吸收带来的误差。纯溶剂空白 当试液、试剂、显色剂均为无色时,用纯溶剂(或蒸馏水)作参比溶液。试剂空白 试液无色,而试剂或显色剂有色时,加入相同量的显色剂和试剂,作为参比溶液。试液空白 试剂和显色剂均无色,试液中其它离子有色时,用不加显色剂的溶液作为参比溶液。,1单组分含量测定实例一:1.1,10-二氮菲测定微量铁 该试剂能与Fe2+能形成3:1的红色配离子,max=512nm。在pH为39范围内,反应能迅速完成,显色稳定。在
20、铁含量0.58gmL1范围内,浓度与吸光度符合朗伯比尔定律。用pH=4.55.0的缓冲液保持其酸度,并用盐酸羟胺还原其中的Fe3+,用标准曲线法进行测定。,实例二:磷钼蓝法测定全磷 用浓硫酸和高氯酸(HClO4)处理样品,使磷的各种式转变为H3PO4,然后在HNO3介质中,H3PO4与(NH4)2MoO4反应形成磷钼黄杂多酸,反应如下:用适当的还原剂如维生素C将其中的Mo(VI)还原为Mo(V),即生成蓝色的磷钼蓝,其最大吸收波长为max=660nm,用标准曲线法可测得样品的全磷含量。,3PO4+12(NH4)2MoO4+21HNO3=(NH4)3PO412MoO3+12NH4NO3+12H2
21、O,吸收峰互不重叠 溶液的总吸光度等于各组分的吸光度之和:A、B两组分的吸收峰相互不重叠,则可分别在 和 处用单组分含量测定法测定 组分A和B。,A=A1+A2+A3+An,2多组分含量测定,吸收峰相互重叠A、B两组分吸收峰相互重叠,可分别在和处测出A、B两组分的总吸光度A1和A2,然后根据吸光度的加和性列联立方程:在 处,在 处,,3.配合物组成的测定,物质的量比法 固定金属离子M的浓度,改变配位剂R的浓度。当金属离子全部被配位剂配合后,再增加配位剂,其吸光度不会增加了,利用外推法可得一交叉点D,D点所对应的浓度比值就是配合物的配合比。,连续变化法 设配位反应为 M+nR MRn cM+cR
22、=c0(常数)配制一系列不同xM(或xR)值的溶液,溶液中配合物浓度随xM而改变,当xM(或xR)与形成的配合物组成相当时,即金属离子和配位剂物质的量之比和配合物组成一致时,配合物的浓度最大。根据与最大吸光度对应的x值,即可求出n。,*紫外分光光度法定性分析简介,比较吸收光谱曲线法:不饱和有机化合物(特别是含共轭体系的有机化合物)既含有未共享的n电)子又含有电子,其中的-*跃迁吸收谱带和n-*跃迁吸收谱带属于紫外可见特征吸收光谱。可以将在相同条件下测得的未知物的吸收光谱与标准谱图进行比较来作定性分析。如果吸收光谱的形状,包括吸收光谱的的、吸收峰的数目、位置、拐点以及等完全一致,则可以初步认为是
23、同一化合物。,利用Woodward-Fieser规则和Scott规则法定性 根据Woodward-Fieser规则和Scott规则来计算最大吸收波长,并与实验值进行比较,来确认物质的结构。Woodward-Fieser规则是计算共轭二烯、多烯烃及共轭烯酮类化合物的 经验规则。该规则主要以类丁二烯结构作为母体得到一个最大吸收的基数,然后对连接在母体上的不同取代基以及其他结构因素加以修正,得到一个化合物的 总值。用Scott规则来计算芳香族羰基衍生物和取代苯的。其方法类似于Woodward-Fieser规则。,9.2 原子吸收分光光度法,9.2.1 概述原子吸收分光光度法(atomic absor
24、ption spectrophotometry,AAS)又称原子吸收光谱法,是基于原子蒸气对于特定波长光的吸收作用来进行定量分析的一种现代仪器分析方法。,含铜试液在原子化系统中雾化成为气溶胶,送入火焰,铜盐经干燥、蒸发、离解、原子化后成原子蒸气。Cu空心阴极灯辐射出波长为324.7 nm的光,穿过火焰中Cu蒸气后,部分被基态Cu原子吸收,检测器测定透过光强度。根据透过光强度减弱的程度,求得试液中铜的浓度。,原子吸收分光光度分析的流程示意,原子吸收分光光度法与紫外可见分光光度法的比较,原理相同:物质对光的选择性吸收作用。仪器相似:都有光源、单色器、检测器、记录系统等。对象不同:UVS为分子(离子
25、),AAS为原子。光谱不同:分子(离子)光谱复杂,为带状,且易相互重叠而发生干扰;原子光谱简单,为线性,重叠少,干扰少。,9.2.2.基本原理,原子具有多种能级状态,其电子在能级间跃迁总伴随能量的发射或吸收:通常处于基态受热激发至高能级,不稳定回跃而放出能量。当以光释放时就产生一定波长的线状光谱。,1、2,共振原子吸收;3、4、5,原子发射,其中3和4 为共振原子发射;6,非辐射跃迁。,原子吸收和原子发射光谱所伴随的电子能级跃迁,基态气态原子吸收特定波长光而跃迁至激发态,产生相应的吸收光谱。从基态跃迁到激发态产生共振吸收线;从激发态跃迁到基态,产生共振发射线。各元素因结构不同,特征谱线波长不同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 仪器 分析 法选介
链接地址:https://www.31ppt.com/p-5215605.html