人工神经网络算法.ppt
《人工神经网络算法.ppt》由会员分享,可在线阅读,更多相关《人工神经网络算法.ppt(20页珍藏版)》请在三一办公上搜索。
1、人工神经网络理论的现状及发展,人工神经网络简称为神经网络或称作连接模型,早在1943年,心理学家McCulloch和数学家Pitts合作提出形式神经元的数学模型(称之为MP模型),从此开创了神经科学理论研究的时代;1957年Rosenblatt提出的感知器(Perception)模型,它由阈值性神经元组成,试图模拟动物和人脑的感知和学习能力.,神经网络几乎与AI同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人
2、工神经网络发生了兴趣,才是神经网络理论得到复兴。,到目前为止,已经出现许多神经网络模型及相应的学习算法。其中误差逆传播(Error Back-propagation)算法(简称BP算法)是一种较常用的算法。人工神经网络可用于对物群的目标拟合、模式分类和预测。,神经网络基本结构神经元人工神经网络结构和基本原理基本上是以人脑的组织结构和活动规律为背景,它反映料人脑的某些基本特征,是人脑的某些抽象、简化或模仿。神经网络有许多并行运算的功能简单的单元组成,每个神经元有一个输出,它可以连接到许多其它神经元,每个神经元输入有多个连接通路,每个连接通路对应一个连接权系数。,X1,X2,Xn,y1,y2,ym
3、,输入层节点,隐层节点,输出层节点,这个算法的学习过程,由正向传播和反相传播组成,在正向传播过程中,输入信息从输入层经隐单元层逐层处理,并传向输入层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望得输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号减小,然后再转入正向传播过程,反复迭代,直到误差小于给定的值为止。,BP网络的学习过程主要由四部分组成:输入模式顺传播、输出误差逆传播、循环记忆训练、学习结果判别。,(1)输入模式顺传播,根据神经元模型原理,计算中间层各神经元的激活值:(j=1,2,p)式中:wij-输入层至中间层连接权
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工 神经网络 算法
链接地址:https://www.31ppt.com/p-5194602.html