人工智能-第四章-非经典推理.ppt
《人工智能-第四章-非经典推理.ppt》由会员分享,可在线阅读,更多相关《人工智能-第四章-非经典推理.ppt(86页珍藏版)》请在三一办公上搜索。
1、第四章 非经典推理,信息科学与技术学院2015.2,4.1 不确定性推理,不确定性推理是研究复杂系统不完全性和不确定性的有力工具。有三种不确定性,即关于知识的不确定、关于证据的不确定性和关于结论的不确定性。,关于结论的不确定性也叫做规则的不确定性,它表示当规则的条件被完全满足时,产生某种结论的不确定程度。,不确定性推理的定义 不确定性推理,就是从不确定性的初始证据(即已知事实)出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或近乎合理的结论的思维过程。4.1.2 造成知识不精确性的主要原因(1)很多原因导致同一结果。如医学上导致低烧的病因就很多,医生只能作出猜测性判断。(
2、2)信息的不完备性。如战场态势估计、股市波动预测等。(3)背景知识的不充分性。如人类目前对癌症机理还不了解。(4)信息描述的模糊性。如“今天天气比较好”。,(5)推理规则的模糊性。如“若物价上涨过快,就要紧缩信贷”等模糊规则。(6)推理能力的局限性。如天气预报,气象专家只能满足于时间不太长、精度尽可能好的预测算法。(7)解题方案的不唯一性。无论是政治、经济、文化,还是军事领域中的很多问题,一般都有多种可选方案,在无法绝对地判断各方案优劣的情况下,只好选择主观上认为相对较优的方案,这又是一种不精确推理。,不确定性推理的基本问题 除了必须解决经典推理方法中同样存在的推理方向、推理方法、控制策略等基
3、本问题外,一般还需要着重解决不确定性的表示与度量、不确定性匹配、不确定性的传递算法,以及不确定性的合成等问题。,(1)不确定性的表示与度量选择不确定性表示方法时应考虑的因素:根据领域问题的特征将其不确定性比较准确地描述出来,以满足问题求解的需要;便于推理过程中对不确定性的推算。知识的不确定性表示 静态强度:表示相应知识的不确定性程度的某个数值。它可以是相应知识在应用中成功的概率,也可以是该条知识的可信程度等,其值范围因其意义与使用方法的不同而不同。证据的不确定性表示 推理中证据的来源:用户在求解问题时提供的初始证据及推理中得到的中间结果。,动态强度:表示相应证据的不确定性程度的数值。初始证据的
4、动态强度由用户给出;推理过程中所得到的中间结论(或中间结果)的动态强度由不确定性传递算法计算得到。,不确定性的度量:对于不同的知识及不同的证据,其不确定性的程度一般是不相同的,需要用不同的数据表示其不确定性程度,还需事先规定其取值范围,只有这样每个数据才会有确定的意义。例如,在专家系统MYCIN中,可信度:表示知识及证据的不确定性;取值范围:-1,1;当可信度0时,其值越大表示相应的知识或证据越接近于“真”;当可信度0时,其值越小表示相应的知识或证据越接近于“假”。,(2)不确定性的匹配对于不确定性推理,由于知识和证据都具有不确定性,而且知识所要求的不确定性程度与证据实际具有的不确定性程度不一
5、定相同,因而就出现了“怎样才算匹配成功?”的问题。常用的解决办法:设计一个算法用以计算匹配双方的相似程度(简称相似度);指定一个相似的“限定”(即阈值),用以衡量匹配双方的相似度是否落在指定的限度内。若相似度在阈值范围内,则表明是匹配的,相应知识可被应用;否则,反之。,(3)组合证据不确定性的算法 在基于产生式规则的系统中,根据知识的前提条件是简单条件还是复合条件,可分为:单一证据:是指知识的前提条件仅为一个简单条件的情况;复合证据:是指知识的前提条件用AND(与)或OR(或)把多个简单条件连接起来构成复合条件的情况,即一个复合条件对应于一组证据。在不确定性推理中,由于结论的不确定性通常是通过
6、对证据及知识的不确定性进行某种运算得到的,因而需要有合适的算法来计算组合证据的不确定性。主要方法:最大最小方法、概率方法、有界方法等。,(4)不确定性的传递算法 包括两个子问题:1)在每一步推理中,如何把证据及知识的不确定性传递给结论;一般做法:按照某种算法由证据和知识的不确定性计算出结论的不确定性。2)在多步推理中,如何把初始证据的不确定性传递给最终结论。一般做法:把当前推出的结论及其不确定性作为证据放入综合数据库,供以后推理使用。(5)结论不确定性的合成 用不同知识进行推理得到了相同结论,但不确定性的程度却不相同,此时,需要用合适的算法对它们进行合成。而且在不同的不确定性推理方法中,所采用
7、的合成方法也就各不相同。,4.1.4不确定性推理方法的分类 常用的方法有数值法和非数值法。数值法以概率方法、确定因子法、DS证据理论和可能性理论为代表;非数值法则以批注理论和非单调逻辑为代表。数值法是对不确定性的一种定量表示和处理方法,便于计算、比较,非数值法是指除数值方法外的其它各种处理不确定性的方法,便于定性分析。,4.2 概率推理,4.2.1 概率论基础1.样本空间与随机事件(1)样本空间 在概率论中,把试验中每一个可能出现的结果称为试验的一个样本点,由全体样本点构成的集合称为样本空间。用D表示样本空间,d表示样本点。如:D=d1,d2(2)随机事件 在概率论中,把由样本点构成的集合称为
8、随机事件。对两个事件A与B,如果事件表达的是“事件A与事件B至少有一个发生”,称该事件为A与B的并事件,记:AUB 如果事件表达的是“事件A与事件B同时发生”,称该事件为A与B的交事件,记:A B 如果事件A与B之间满足“A B=,AUB=D”,则称A与B为互逆事件。,2.事件的概率(1)统计概率 在同一组条件下进行大量重复试验时,如果事件A出现的频率fn(A)总是在区间0,1上的一个确定常数p附近摆动,且稳定于p,则称p为事件A的统计概率。P(A)=p 其中:fn(A)=m/n n:试验总次数 m:试验中A发生次数 统计概率的性质:对任一事件A,有0P(A)1必然事件D的概率P(D)=1,不
9、可能事件的概率 P()=0对任一事件A,有 P(A)=1-P(A),设事件A1,A2,Ak(k n)是两两互不相容的事件,AiAj=(i j),则 设A、B是两个事件,则 P(AUB)=P(A)+P(B)-P(A B)(2)条件概率 设A与B是某个随机试验中的两个事件,如果在事件B发生的条件下考虑事件A发生的概率,就称它为事件A的条件概率,记为P(A/B)。定义:设A、B是两个事件,P(B)0,称为事件B已发生条件下,事件A发生的条件概率,3.全概率公式与Bayes公式(1)全概率公式设事件A1,A2,An满足:(1)任意两个事件都互不相容,即当ij时,有AiAj=(i=1,2,n;j=1,2
10、,n);(2)P(Ai)0(i=1,2,n);(3)对任何事件B有:,例:A1=取红桃牌 A2=取方块牌 A3=取黑桃牌 A4=取梅花牌 A5=取王牌 B=取花脸牌 解:P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+P(A4)P(B|A4)+P(A5)P(B|A5)=(13/543/13)4+2/540=12/54,(2)Bayes公式设事件A1,A2,An两两互不相容,且它们构成全部样本空间,则对任何事件B有:,称这个公式为Bayes公式,同时称P(Ai),P(B|Ai)的值为先验概率;P(Ai|B)的值为后验概率。Bayes公式就是从先验概率推导出
11、后验概率的公式。,【注意】:贝叶斯公式与全概率公式的区别。(1)全概率公式是由原因到结果的计算公式;(2)贝叶斯公式是在已知某种结果发生的情况下,寻求使这个结果发生的原因。贝叶斯公式在实际问题中有着十分重要的应用。,4.3 确定性理论(可信度方法)1、可信度的概念 可信度是指人们根据以往经验对某个事物或现象为真的程度的一个判断,即人们对某个事物或现象为真的相信程度。在确定性理论中不确定性是用可信度表示的。,2、C-F模型(1)知识的不确定性在C-F模型中,知识是用产生式规则表示的。IF E THEN H(CF(H,E)E是知识的前提条件(证据),可以是一个简单条件,也可以是由合取和析取构成的复
12、合条件。H是知识的结论,可以是一个或多个结论。,CF(H,E)是知识的可信度。CF(H,E)的具体值由领域专家给出,其取值范围为一1,1。CF(H,E)0表示证据存在,增加结论为真的确定性程度,CF(H,E)越大结论越真,CF(H,E)1表示证据存在结论为真。相反,CF(H,E)0表示证据存在,增加结论为假的确定性程度,CF(H,E)越小结论越假,CF(H,E)一1表示证据存在结论为假。CF(H,E)0时,则表示证据与结论无关。,例如:IF 发烧 AND 流鼻涕 THEN 感冒(0.8),(2)可信度的定义 CF(H,E)=MB(H,E)-MD(H,E)MB(H,E):信任增长度,表示证据E的
13、出现,使结论H为真的信任增长度。若P(H)=1 否则 MD(H,E):不信任增长度,表示证据E的出现,对结论H的不信任增长度。若P(H)=0 否则 P(H)为H的先验概率,P(H|E)为H的条件概率,MB(H,E)0表示因证据E的出现增加对结论H为真的信任增长度,即P(H|E)P(H)MD(H,E)0表示因证据E的出现增加对结论H为真的不信任增长度,即P(H|E)P(H)若P(H|E)=P(H)若P(H|E)P(H),基本性质:MB和MD的互斥性 当MB(H,E)0时,MD(H,E)=0 当MD(H,E)0时,MB(H,E)=0,值域 0MB(H,E)1 0MD(H,E)1-1CF(H,E)1
14、典型值-1 则P(H|E)=0 CF(H/E)=0 则P(H|E)=P(H)1 则P(H|E)=1对H的信任增长度等于对非H的不信任增长度 MD(H,E)=MB(H,E)CF不同于概率P 对于概率有:P(H)+P(H)=1 且0 P(H),P(H)1 而 CF(H|E)+CF(H|E)=0 即:对H的可信度与对非H的可信度之和等于0,对同一前提E,若支持若干个不同的结论Hi,则,(3)证据的不确定性 证据的不确定性是用证据的确定性因子CF(E)表示的。原始证据的确定性因子由用户主观地给出,非原始证据的确定性因子由不确定性推理获得。值域当证据E以某种程度为真时,有0CF(E)l。当证据E以某种程
15、度为假时,有-1CF(E)0。当证据E一无所知时,有CF(E)0。典型值 当证据E肯定为真时,有CF(E)l。当证据E肯定为假时,有CF(E)-1。当证据E一无所知时,有CF(E)0。,(4)不确定性推理算法E肯定存在 在证据E肯定存在时有CF(E)1,那么结论H的确定性因子为规则的确定性因子,即 CF(H)CF(H,E)E不是肯定存在 在客观的现实世界中,对证据的观察往往也是不确定的。除此之外,证据E可能还是另一条规则的结论,这时也常常是不确定的。在这种情况下,结论H的确定性因子CF(H)不仅取决于规则的确定性因子CF(H,E),而且还取决于证据E的确定性因子CF(E)。计算公式为 CF(H
16、)CF(H,E)max0,CF(E),证据是多个条件的逻辑组合证据是合取连接 即 E=E1 AND E2 ANDAND En 则 CF(E)CF(E1 AND E2 AND.AND En)minCF(E1),CF(E2),.,CF(En)证据是析取连接 这时,EE1 OR E2 OR.OR En,有 CF(E)CF(E1 OR E2 0R.OR En)maxCF(E1),CF(E2),.,CF(En),(5)结论不确定性的合成 当多条知识推出相同结论,且这些知识的前提相互独立,结论的可信度又不相同,则可用不确定性的合成算法求出该结论的综合可信度。若有两条规则分别是 IF E1 THEN H(C
17、F(H,E1)IF E2 THEN H(CF(H,E2)那末首先分别计算出CF1(H)和CF2(H):CF1(H)CF(H,E1)max0,CF(E1)CF2(H)CF(H,E2)max0,CF(E2),然后用公式 CF1(H)十CF2(H)-CF1(H)CF2(H)若CF1(H)0 且CF2(H)0CF12(H)CF1(H)十CF2(H)十CF1(H)CF2(H);若CF1(H)0且CF2(H)0(CF1(H)十CF2(H)/(1-min|CF1(H)|,|CF2(H)|);其他计算出由E1和E2组合而导出的确定性因子CF12(H)。,举例有如下的推理规则:Rule l:IF E1 THEN
18、 H(0.9)Rule 2:IF E2 THEN H(0.7)Rule 3:IF E3 THEN H(-0.8)Rule 4:IF E4 AND E5 THEN E1(0.7)Rule 5:IF E6 AND(E7 0R E8)THEN E2(1.0),H,E1,E2,E6,E4,E5,OR,AND,0.9,-0.8,0.7,1.0,R1,R3,R4,R5,E3,E7,E8,0.7,R2,AND,在图中,E3、E4、E5、E6、E7和E8为原始证据,其确定性因子由用户给出,假定它们的值为:CF(E3)0.3,CF(E4)0.9,CF(E5)0.6,CF(E6)0.7,CF(E7)-0.3,CF
19、(E8)0.8。求CF(H)=?解:先求出CF(E1)、CF(E2)和CF(E3)。CF(E1)07max0,CF(E4 AND E5)07max0,minCF(E4),CF(E5)07max0,min09,06 07max0,06 o706 0.42,CF(E2)1max0,CF(E6 AND(E7 OR E8)1max(0,minCF(E6),maxCF(E7),CF(E8)1max0,minCF(E6),max-0.3,0.8 1max0,min0.7,0.8 1max0,0.7 10.7 0.7CF(E3)0.3CF1(H)09max0,CF(E1)09max0,042 09042 0
20、38,CF2(H)07max0,CF(E2)07max0,07 0707 049CF3(H)08CF(E3)0803 024 CF1(H)0 且CF2(H)0 CF12(H)CF1(H)十CF2(H)CF1(H)CF2(H)038十0490380.4906838CF12(H)0 且CF3(H)0 CF(H)CF123(H)(CF12(H)十CF3(H)/(1min|CF12(H)|,|CF3(H)|)(06838024)/(1 0.24)05839,CF模型的优点是:简单、直观。主要表现在组合假设和证据的不确定性的计算十分简单,而且不需要把信任和不信任的判断知识表示成概率的形式。把某个值指派给
21、一个假设的确定性因子要比把一个概率直接指派给一个假设要容易得多。计算仅有线性的信息和时间的复杂度,而且推理的近似效果也比较理想。推理的结果与证据提供的顺序无关。推理过程中的阈值推理所得到的结论中有的可信度很低,可以设定一个阈值,在推理过程中去掉那些可信度低于阈值的结论。一般阈值定为0.2,当CF0.2时,置CF0,当CF0.2时,CF有意义。,3.带加权因子的可信度推理(1)知识不确定性的表示 IF E1(1)AND E2(2)ANDAND En(n)THEN H CF(H,E)i为加权因子,取值范围0,1,由领域专家给出。加权因子取值原则:条件的独立性越强,对结论的重要程度越高,则该条件的加
22、权因子越大。且满足归一条件,(2)组合证据不确定性的计算 对于 E=E1(1)AND E2(2)ANDAND En(n)可信度为:,如果不满足归一条件,则可信度为:,(3)不确定性的更新 CF(H)=CF(H,E)CF(E)“”可以是乘运算,也可以是其他合适的运算。,例:设有如下知识:r1:IF E1(0.6)AND E2(0.4)THEN E5(0.8)r2:IF E3(0.5)AND E4(0.3)AND E5(0.2)THEN H(0.9)已知:CF(E1)=0.9,CF(E2)=0.8,CF(E3)=0.7,CF(E4)=0.6求:CF(H)解:CF(E1(0.6)AND E2(0.4
23、)=1CF(E1)+2CF(E2)=0.60.9+0.4 0.8=0.86 CF(E5)=0.80.86=0.69 CF(E3(0.5)AND E4(0.3)AND E5(0.2)=0.50.7+0.3 0.6+0.2 0.69=0.67 CF(H)=0.90.67=0.70,主观Bayes方法的基本思想由于证据E的出现,使得P(H)变为P(H|E)主观Bayes方法,就是研究利用证据E,将先验概率P(H)更新为后验概率P(H|E),4.4 主观Bayes方法,1.知识不确定性的表示,知识表示 IF E THEN(LS,LN)H几率函数O(x)几率函数定义为O(x)P(x)/(1-P(x)。它
24、表示x出现的概率与不出现概率之比,随着P(x)的增大,O(x)也增大。当P(x)0时,有O(x)0 当P(x)1时,有O(x)这样,取值为0,1的P(x)被放大为取值为0,的O(x)。充分性度量LS:LSP(E|H)/P(E|H)必要性度量LN:LNP(E|H)/P(E|H)LS、LN的取值范围0,根据Bayes公式有 P(H|E)P(E|H)P(H)/P(E)(1)P(H|E)P(E|H)P(H)|P(E)(2)将上述两式相除,得P(H|E)/P(H/E)=P(E|H)/P(E|H)P(H)/P(H)再利用几率函数和LS,上式可表示为 O(H|E)LSO(H)当LS1时,O(H|E)O(H)
25、,说明E支持H,LS越大,O(H|E)就越大,即P(H|E)越大,说明E对H的支持越强。当LS时,O(H|E),从而有P(H|E)1,说明E的存在导致H为真。当LS=1时,O(H|E)O(H),说明E对H没有影响 当LS1时,O(H|E)O(H),说明E不支持H 当LS=0时,O(H|E)=0,说明E的存在使H为假 因此,LS反映E的出现对H为真的影响程度,称LS为充分性度量。,同理,将前面(1)(2)中的E换为E,可以得到 O(H|E)=LNO(H)当LN1时,O(H|E)O(H),说明E支持H,LN越大,O(H|E)就越大,即P(H|E)越大,说明E对H的支持越强。当LN时,O(H|E),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 第四 经典 推理
链接地址:https://www.31ppt.com/p-5194190.html