VTI 介质多参数地震走时层析成像方法研【推荐论文】 .doc
《VTI 介质多参数地震走时层析成像方法研【推荐论文】 .doc》由会员分享,可在线阅读,更多相关《VTI 介质多参数地震走时层析成像方法研【推荐论文】 .doc(8页珍藏版)》请在三一办公上搜索。
1、精品论文VTI 介质多参数地震走时层析成像方法研究王光银,刘玉柱,杨积忠,董良国5(同济大学海洋与地球科学学院,上海 200092) 摘要:本文基于球谐展开群速度表达式计算走时关于各向异性参数的 Frchet 核函数,利用 共轭梯度法进行 VTI 介质中多参数联合反演。我们考虑了两种参数化方法。经过理论分析 和数值试验,我们得出:与经典的 Thomsen 参数化方法相比较,垂直慢度,水平慢度,以10及动校正慢度的参数化方法更有利于多参数联合走时层析。为了克服 参数在物理上对走时 的不敏感性,我们采用了两步法来做双参数反演,理论模型实验反演得到了与垂直速度精度相当的 。可以将两步法扩展到三步法以
2、同时反演各向异性介质中的三个参数,数值实验展示了该策略的应用潜力.关键词:固体地球物理;各向异性介质;Frchet 核函数;参数化;联合层析;15中图分类号:P315.8Joint inversion of VTI parameters using nonlinear traveltime tomographyWANG Guangyin, LIU Yuzhu, YANG Jizhong, DONG Liangguo20(Ocean and Earth School, Tongji University, Shanghai 200092)Abstract: In this paper, we u
3、se a nonlinear tomographic method to jointly invert the multiple parameters in VTI media. It is based on the harmonic series of group velocity to calculate the Frchet kernels of traveltime respect to model parameters. Two parameterizations are used. Throughtheoretically analysis and numerical experi
4、ments, we find that the parameterization of vertical slowness,25horizontal slowness, and NMO slowness is more appropriate for joint traveltime tomography, compared with the original Thomsen parameterization. To overcome the physical weak influence of epsilon on traveltime, a double-round strategy is
5、 employed in double-parameter inversion, through which epsilon as well as vertical velocity is successfully obtained. The extension from double-round totriple-round strategy also shows great potential to invert all of the three parameters.30Key words: Solid earth physical;anisotropy media; Frchet ke
6、rnel; parameterization; joint inversion0引言国内外学者对各向异性层析做了深入的研究。传统的各向异性层析是在弱各向异性近似 下,主要利用走时信息进行线性反演1234。近十年来,各向异性层析发展到利用多种地35震信息、在不同域、采用非线性方法进行反演。如,Koren5等和 Bakulin6等在成像域利用 局部偏移道集反演 Thomsen 背景参数;Zhou7等提出了一种在强各向异性介质中利用走时 信息反演弹性模量或 Thomsen 参数的非线性方法;Gholami8等在频率域,利用全波场信息 反演 VTI 介质各向异性参数;Crampin9利用横波分裂反演方
7、位各向异性;Bale10等利用 PS 转换波反演横波各向异性; Grechka11 与 Mateeva 利用 VSP 数据反演各向异性参数;40Sieminski12 13等利用伴随状态法分别研究了体波和面波有限频层析的核函数,同时提出了 相应的各向异性介质有限频层析成像方法。基金项目:博士点基金项目(20090072110030);自然科学基金项目(41274116)作者简介:王光银(1986-),男,硕士研究生,各向异性介质层析成像通信联系人:刘玉柱(1979-),男,副教授,地震波反演与层析成像. E-mail: liuyuzhu- 8 -在参数化方面,Plessix14 和 Cao 对
8、 VTI 介质面波全波形反演 (FWI)的参数化方法 进行了研究,并建议选择水平速度和 NMO 速度进行参数化;Huang15等在固定各向异性参数0的情况下得到了更加精确的垂直速度;Zhou16指出同时反演 (v , e , d ) 三个参数比只反演速45度能得到一个更好的结果。本文利用局部最优化反演理论同时反演 VTI 介质中的多个参数,并分析比较了两种参数化方法。为了克服不同参数对走时敏感度的不同,本文对反演策略也进行了探讨。1方法原理为使目标p极小值的p50在各向同性介质中,基于 L2 范数的 P 波走时层析目标函数 F ( s ) 如式(1)所示。(1)式的 解即函数取慢速 s。公式(
9、2)、(3)分别为该目标函数所对应的一阶方 向 和二阶步长 t 。和 t 的计算可以基于 Liu17等的矩阵分解法,以避免大型 Frchet 核矩阵 K 的存储。-t 2F ( s ) = 1 tp = K T Dt2oc 255(1) (2)Tt =p p,2F = K T K(3)= t -t上式中,DtpT 2Fpo c 。t o 和t c 分别是观测走时向量与合成走时向量,T 表示复矩阵的共轭转置。在各向同性介质射线走时层析中,K 即为射线长度矩阵 L。 为了利用上述非线性反演方法计算 VTI 介质中的各向异性参数,本文首先使用传统的1860Thomsen 参数化 (s0 , e ,d
10、 ) 方式,利用球谐级数展开表达群慢度(Sayers, 1995),公式如(4)0所示,其中 sj 是入射角 j 的函数。进而得到的 Frchet 核函数 Ks , Ke, Kd如式(5)、(6)所示。s= A(e ,d ,j ) s ,A = 1- 2+1 cos2 j - 1- 1 cos4 j + 1(4)j 0 1+ 2d1+ 2e 1+ 2d1 + 2e 1 + 2e Ks0= L(sj)sj ,s0Ke = L(sj)sj ,eKd = L(sj)sjd(5)sjsjsin jsjcosj sin j4 2 265= A,s= - ,e(2e +1)2 v A= -d(1 + 2d
11、 )2 v A(6)0 0 0为了能够同时反演多个参数,需要分析不同参数对走时的影响程度,即 Frchet 核函数。 根据式(6),不难发现慢度核函数比其他两个核函数的数量级大很多。图 1 为 v0 = 3000m / s ,e = d = 0.2 的均匀 VTI 介质中核函数的理论合成结果,同样不难发现它们之间数量级的巨大差异。这就表明如果没有一个精确的 s0 就很难同时反演出 e 和d 。本文对另外一种参数70化,即垂直慢度 s0 ,水平慢度 sh 与 NMO 慢度 sn ,进行了分析。 sh 、 sn 、 s0 与e 、d 的关 系见式(7),对应的三个核函数如(8)、(9)所示。理论分
12、析与数值合成结果(图 1b) 表明,这三个新的核函数的数量级比较接近。这表明,如果使用第二种参数化方法应该能够同步反演出所有的各向异性参数。sh =s0 ,1 + 2esn =s01 + 2d(7)75Ks0= L(sj)sj ,s0Ksh= L(sj)sj ,shKsn= L(sj)sjsn(8)sjs0= A,sjshsin2 j + 2e cos2 j + cos4 j= ,1+ 2e Asjsn2 cos2 j + 2d cos2 j - cos4 j=1 + 2d A(9)(a)均匀各向异性介质中(v0 , e ,d ) 参数化核函数(a) Frchet kernels valu o
13、f0Ks , Ke , Kd in a homogeneous VTI medium.80(b)均匀各向异性介质中(v0 , vh , vn ) 参数化核函数(b) Frchet kernels valu ofKs0, Kshs, K in a homogeneous VTI medium.n图 1 均匀各向异性介质中(v0 , e ,d ) 参数化核函数(a)与(v0 , vh , vn ) 参数化核函数(b)与入射角的关 系。085Fig1. Frchet kernels valu ofKs , Ke , Kd (a), Ks, Ksh, K (b), as a function of i
14、ncident angle in as0nhomogeneous VTI medium.2数值试验为了测试上述非线性化反演方法及第二种参数化方式的有效性,我们首先固定d 为精确 值,进行 v0 和e 双参数反演。所有实验都是基于相同的理论模型(图 2)与相同的观测方式。90观测系统四边放炮,三边接收。每一边 100 炮,共 400 炮,300 个接收点均匀分布在其余的 三边,炮点与检波点间隔都是 20 米。模型离散化为 200*200 个网格,网格间隔为 10 米*10米。为了快速收敛,本文采用共轭梯度(CG)算法,且使用二阶步长。真实模型与初始模 型如图 2 所示。两种参数化方式的反演结果如
15、图 3 所示。从反演结果可以看出,第二种参数化得到的反演结果比第一种参数化更精确。需要注意的是,两种参数化反演得到的e 与真实95模型差距都比较大。(a)真实速度模型(b)初始速度模型(a)Initial v0(b)start v0100(c)真实 epsilon 模型(d)初始 epsilon 模型(c)initial e (d)start e图 2 真实速度模型(a),初始速度模型(b),真实 epsilon 模型(c),初始 epsilon 模型(d)Fig2. Initial v0(a), start v0(b), initial e (c), and start e (d).105(
16、a)第一种参数化方式反演得到的 v0(b)第二种参数化方式反演得到的 v0(a)Inverted v0by the first parameterization(b)nverted v0by the second parameterization110(c)第一种参数化方式反演得到的 epsilon(d)第二种参数化方式反演得到的 epsilon(c)inverted e by the first parameterization(d)inverted e by the second parameterization图 3 第一种参数化方式反演得到的 v0 (a),第二种参数化方式反演得到的
17、v0 (b),第一种参数 化方式反演得到的 epsilon(c),第二种参数化方式反演得到的 epsilon(d).Fig3. Inverted v0by the first parameterization (a), inverted v0by the second parameterization (b), invertede by the first parameterization (c), and inverted e by the second parameterization (d).1151201251303反演策略一个合适的参数化方法只是从数学上提高了弱参数e 与d 对走时的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 推荐论文 VTI 介质多参数地震走时层析成像方法研【推荐论文】 介质 参数 地震 走时 层析 成像 方法 推荐 论文
链接地址:https://www.31ppt.com/p-5192349.html