专题二常见的细胞信号转导通路.ppt
《专题二常见的细胞信号转导通路.ppt》由会员分享,可在线阅读,更多相关《专题二常见的细胞信号转导通路.ppt(58页珍藏版)》请在三一办公上搜索。
1、专题二 常见的细胞信号通路,JAK-STAT,TNFR-NF-KB,Keap1-Nrf2,一、JAK-STAT信号通路,JAK-STAT信号通路主要介导细胞因子(IFN/,IFN,IL-10,IL-6等)和生长因子(EPO,GH,EGF,PDGF)刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等多种生物学过程。主要由三个成分组成:酪氨酸激酶相关受体(tyrosine kinase associated receptor)、酪氨酸激酶JAK、转录因子STAT。能激活 JAK/STAT 途径的受体家族广泛分布于各种组织的细胞中,属于细胞因子受体超家族。G 蛋白也可以通过非受体型酪氨酸激
2、酶激活 J AK/STAT,干扰素受体家族,白介素受体家族等。受体胞外部分为N端,胞内部分为C端、跨膜区。共同特点:是体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体之间无明显的同源性,只在胞浆近膜区有一段同源区,该区域是其与JAK激酶结合的功能区段。受体的同源区通常包括两个高度保守的结构,一个是富含脯氨酸的“box1”,另一个是在受体靠近细胞膜处的“box2”,它们是决定细胞因子受体与JAK激酶之间相互偶联的最重要结构。,JAK-STAT信号通路,酪氨酸激酶相关受体,受体的二聚化可以是同源的也可以是异源的。在发生同源受体二聚化时,只有JAK2被激活;相反,由不同亚基组成的异
3、源受体二聚化,却可以激活多种JAK。一旦被激活,JAK便磷酸化受体的亚基以及其他底物。,JAK-STAT信号通路,JAK是一类细胞膜内的非受体型可溶性酪氨酸激酶,分子量120-130KD,只有催化结构域而没有SH2。JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。,JAK-STAT信号通路,JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JH)。JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域,酪氨酸激酶JAK(Janus kinase),信号转导子和转录激活子(si
4、gnal transducer and activator of transcription)。自第一1991年个STAT蛋白Stat1被纯化出来以后,目前已发现STAT家族的七个成员,即STAT1,STAT2,STAT3,STAT4,STAT5a,STAT5b,STAT6,含有734 851个氨基酸不等,分子量约为84-113KD。所有STAT蛋白分子由7个不同的功能结构域组成:N-端保守序列、螺旋结构域、DNA结合区、连接区域、SH3结构域、SH2结构域、C-端的转录激活区。,JAK-STAT信号通路,转录因子STAT,1、N端结构域:位于1125位氨基酸残基之间,是STAT蛋白家族中最高
5、度保守性的结构域之一。功能:N端结构域有助于STAT蛋白的二聚体形成四聚体或高度有序的多聚体,增强STAT蛋白和靶基因启动子的结合力。,、螺旋结构域:位于135315位氨基酸残基之间,由4个螺旋组成,主要负责STAT蛋白与其它蛋白的相互作用。,3、DNA结合结构域:位于320490位氨基酸残基之间,含有几个-折叠结构,与靶基因的启动子结合,启动靶基因的转录。不同的STAT蛋白具有不同的DNA结合特异性。,JAK-STAT信号通路,4、连接结构域:位于490580位氨基酸之间,连接DNA结合结构域和SH2结构域,其序列高度保守,可能与转录调节有关。,5、SH2结构域:位于585685位氨基酸残基
6、之间,是STAT分子最保守的结构域,是最重要的功能区段。决定了STAT分子和其相应的受体相互作用的特异性;介导了STAT和活化的JAK之间的相互作用;介导了STAT分子的二聚化,一个STAT蛋白中的SH2结构域与另一个STAT蛋白中磷酸化的酪氨酸相互作用形成二聚体,从而导致STAT蛋白的入核。,JAK-STAT信号通路,、SH3结构域:位于500600位氨基酸之间,序列保守性较SH2差,能结合富含脯氨酸的序列。目前尚未发现SH3结构域内有何重要的氨基酸。,7、酪氨酸激活基序:这个酪氨酸和其C端的氨基酸序列不仅可以阻止与自身SH2结构域的结合,还决定了STAT分子和其相应的受体相互作用的特异性,
7、以及STAT分子之间二聚化的特异性。,8、转录激活结构域(TAD):有一个保守的丝氨酸残基,其磷酸化与否直接影响STAT蛋白的转录活性。它很可能受到翻译后调节,如丝氨酸磷酸化。,JAK-STAT信号通路,二聚化受体激活JAK,JAK将STAT磷酸化,STAT形成二聚体,暴露出入核信号,STAT进入核内,调节基因表达,配体与受体结合导致受体二聚化,JAK-STAT信号通路,JAK-STAT信号通路,JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(docking site),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。
8、,JAK-STAT信号通路,细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。,最后,激酶JAK催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二聚体的形式进入细胞核内与靶基因结合,调控基因的转录。一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12却特异性激活STAT4。,JAK-STAT信号通路,NF-B信号通路包括受体、受体近端信号衔接蛋白、IB激酶复合物、IB蛋白(
9、inhibitory protein of NF-B)、NF-B二聚体。通常情况下,细胞质中的NF-B与I B结合成三聚体复合物,处于失活状态。很多细胞外刺激信号都可以引起NF-B信号通路的激活,如TNF-a、白介素IL-1、LPS,以及物理和化学因素如紫外线等。这些细胞外的刺激所产生的胞内早期信号途各不相同,但都可以通过衔接蛋白的传递,最终激活IKK复合物。,二、NF-B信号通路,NF-B信号通路分为的经典信号通路和非经典信号通路在NF-B经典信号通路中,IB蛋白的降解使NF-B二聚体得到释放 在NF-B非经典信号通路中,则是通过P100到P52的加工处理,是信号通路激活,NF-B信号通路,
10、包括七个成员:IB、IB、IB、IB、Bcl-3、p100、p105。在细胞质中与NF-B二聚体结合。IB蛋白:存在锚蛋白重复区域(即多个紧密相连的钩状重复序列,每个重复序列含有33个氨基酸,IKKIKK调节亚基NEMO,NF-B信号通路,IB激酶复合物,IB蛋白家族,1986年从B淋巴细胞的细胞核提取的转录因子,能与免疫球蛋白kappa轻链基因的增强子B序列GGGACTTTCC特异性结合,促进轻链基因表达。NF-B属于转录因子Rel家族成员,广泛存在于各种细胞中。目前发现5种:RelA(p65)、RelB、C-Rel、p50/NF-kB1(p50/RelA)和p52/NF-kB2。每个成员N
11、端都有一个高度保守的Rel同源结构域(RHD),由约300个氨基酸组成,包含结合特异性DNA序列的基序;蛋白二聚化的基序;一个核定位基序。C末端疏水区域提供NF-B亚基之间的连接。,NF-B信号通路,核转录因子-B(nuclear factor-kappa B,NF-B),在P65、c-Rel和RelB中,存在着转录激活区域-TAD,对基因表达起正向调节的作用。P50、P52不存在转录激活区域,他们的同二聚体可以抑制转录。NF-B以二聚体形式存在。在胞浆二聚体NF-B与IB结合,在核内二聚体NF-B与DNA结合,NF-B信号通路,当TNF-a(或炎症因子、LPS、紫外线)等外界刺激时,IB激酶
12、被磷酸化而激活,有活性IB激酶催化IB磷酸化。IB 激酶被激活,IB蛋白的亚基的Ser32和Ser36残基和亚基的Ser19和Ser23残基磷酸化,泛素化。,NF-B信号通路,有活性IB随即从p50/p65/IB异源三聚体中解离出来,NF-B二聚体构象发生变化,核定位序列(nuclear localization signals,NLS)暴露,并迅速从细胞质进入细胞核内,与核内DNA上的特异序列相结合,从而启动或增强相关基因的转录。,NF-B信号通路,在很多NF-B信号通路中,许多的信号中间物都是共有的,特别是IKK复合物的上游信号。不同的信号通路可利用一些共有的信号元件激活和抑制通路。,NF
13、-B信号通路,IKK复合物上游衔接蛋白TRAFs(TNF受体相关因子)RIPs(受体作用蛋白)IKK复合物的激酶TAK1(TGF激活性激酶1)、NIK(NF-B诱导激酶),NF-B信号通路,TRAFs家族成员是一大类胞内接头蛋白,能直接或间接与多种TNFR和IL-1/TLR受体家族成员结合,连接到多种下游信号通路的信号因子,包括NF-B的信号通路,从而影响细胞的生存、增殖、分化等,并参与多个生物学过程的调控。在几乎所有NF-B的信号通路中,都是关键的信号中间物。TRAF蛋白家族TRAF蛋白家族一共有7个成员,分别是TRAF1、TRAF2、TRAF3、TRAF4、TRAF5、TRAF6、TRAF
14、7。,TRAFs:TNF受体相关因子,TRAF蛋白质在结构上具有很高的同源性,同源性一般大于30%,其特征性的结构是所有成员在羧基端都有一个TRAF结构域,即包括一个卷曲螺旋结构,介导同型和异型蛋白之间的相互作用。另外,TRAF2-7的N-末端存在一个RING指结构,其可以作为E3泛素连接酶起作用,即将泛素转移到目的蛋白上。RING 指结构后还有5 到7 个锌指结构域,TRAF蛋白的结构,NF-B信号通路,TRAFs的功能,通过TRADD,TRAF2和 TNF-的受体TNFR1结合,向下传递信号,激活IKK。在此过程中,其RING指区域作为E3连接酶是必须的。但是其具体作用机制还需要深入研究。
15、在TNFR1信号通路中,单一的敲除TRAF2或TRAF5,NF-B信号通路的激活仍会出现。但是双敲除TRAF2和TRAF5,则会造成 NF-B信号通路中,IKK复合物的激活出现缺陷。因此,在TNFR1信号通路中,需要TRAF2和TRAF5的共同作用。,NF-B信号通路,在Toll-likeIL-1信号通路中,TRAF6可与受体复合物发生作用,激活IKK。但是,TRAF6的E3连接酶作用机制也是需要进一步证明的。,NF-B信号通路,另外,TRAF蛋白家族成员中,TRAF3也是较广泛。TRAF3是既可以介导NF-B经典信号通路,也可以介导非经典信号通路。在经典信号通路中,其可以与受体直接作用激活I
16、KK复合物。而在非经典信号通路中,TRAF3通过NIK(NF-B诱导激酶)激活IKK,从而激活信号通路。因此,不管在经典还是非经典信号通路中,TRAF蛋白在诱导IKK激活方面发挥着很重要的作用。,NF-B信号通路,RIPs受体作用蛋白,RIPs是经典NF-B信号途径中的关键的衔接蛋白。RIPs既可以通过蛋白结合区域直接作用于信号通路的上游,也可以通过与NEMO结合激活IKK复合物。并且,在大多数的TRAF依赖型信号通路中,RIPs都被牵涉其中。RIP蛋白家族一共有7个成员,分别为RIP1-7。RIP蛋白的结构特征是:都具有保守的丝氨酸/苏氨酸激酶区域。,NF-B信号通路,RIP1,RIP1具有
17、一个死亡结构域,介导其他衔接蛋白和受体的死亡结构域之间的相互作用。RIP1可以招募并激活IKK复合物。RIP1激酶区域对IKK的激活并不是必需的,通过NEMO的寡聚化和IKK的自磷酸化,诱导IKK复合物的激活。RIP1只出现在NF-B经典信号通路中,而对于CD40或LTR介导的非经典信号通路中是不需要RIP1的。,RIP2包括一个C-末端半胱天冬酶活性和招募区域(CARD),可介导受体和衔接蛋白之间的相互作用。与RIP1相似,RIP2的激酶区域对IKK的激活也不是必需的,在NF-B经典信号通路中,RIP2与TAK1和TRAFS作用,直接诱导NEMO的泛素化,和下游信号通路激活。,RIP2,NF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 常见 细胞 信号 转导 通路

链接地址:https://www.31ppt.com/p-5184039.html