中科院计算流体力学最新讲义CFD115讲差分方法.ppt
《中科院计算流体力学最新讲义CFD115讲差分方法.ppt》由会员分享,可在线阅读,更多相关《中科院计算流体力学最新讲义CFD115讲差分方法.ppt(41页珍藏版)》请在三一办公上搜索。
1、计算流体力学讲义2011 第五讲 差分方法(3)李新亮;力学所主楼219;82543801,知识点:激波捕捉格式 TVD、WENO、MUSCL、NND,1,Copyright by Li Xinliang,讲义、课件上传至(流体中文网)-“流体论坛”-“CFD基础理论”下载地址2:,知识回顾,1.差分格式的分辨率,有效网格点数:一个波长里面的网格点数(PPW:Point per Wavelength),修正波数,2.群速度控制(GVC),Copyright by Li Xinliang,3,3.流通矢量分裂,“在二阶迎风与二阶中心格式中选一个”“选接近一阶迎风的”,GVC2 格式,Copyri
2、ght by Li Xinliang,4,5.1 非物理振荡及TVD格式,1.数值解中的非物理振荡,间断附近非物理振荡的根源,理论1:色散误差导致各波传播速度不同(第4讲),理论2:粘性耗散不足,思路:物理问题 有粘;物理粘性足以克服本身振荡 数值方法错误计算了物理粘性不足以克服振荡,物理问题本身也可能振荡。但如果错误计算物理粘性,则会错误地加剧(或衰减)振荡。,1)非物理振荡的原因分析,理论3:格式不能保单调,Copyright by Li Xinliang,5,数值实验,二阶中心差分,计算域0,1,网格点201(Dx=0.005)时间步长Dx=0.0005,T=0.1时刻的u分布,Re=2
3、00Dx=0.005,现象:Dx一定时,减小Reynolds数可抑制振荡 Reynolds数一定时,减小Dx可抑制振荡,暗示,是某一特征量,Re=2000Dx=0.005,Re=2000Dx=0.0005,相同,Copyright by Li Xinliang,6,对流-扩散方程的特性:,n,n+1,差分方程:,某点的值是上一时刻周围几个点上值的线性组合,物理上要求系数 ak 均非负,含义:某处浓度的增加对下一时刻周围浓度的影响为正。,j-2 j-1 j j+1 j+2,差分方程单调性(无振荡)条件:差分方程(1)中的系数非负,网格Reynolds数,Copyright by Li Xinli
4、ang,7,2)重要概念:网格 Reynolds数 以网格尺度度量的Reynolds数,含义:数值振荡 流动尺度为网格尺度 网格 Reynolds数小,该尺度的能量被耗散掉 不发生振荡,j,j+1,j-1,过于苛刻的条件,单方向网格点数106,三维1018,单纯靠物理粘性抑制振荡,网格间距必须足够小,通常难以实现,网格足够小:不会发生振荡;网格小于激波的实际厚度,则不会振荡,网格Reynolds数足够小时,物理粘性发挥作用,抑制振荡,Copyright by Li Xinliang,8,3)人工粘性,物理粘性 足够小才发挥作用,Reynolds数很高时很难做到,思路:人为增加粘性系数(添加人工
5、粘性)抑制振荡,优点:方法简便,有抑制振荡效果缺点:改变了物理问题,带来误差,湍流、分离流等对粘性敏感:非物理解,分离流 对粘性敏感,转捩对粘性敏感,很难计算对粘性敏感的问题,改进措施:A:局部施加人工粘性 B:高阶人工粘性,Von Neumann,MacCormack,Copyright by Li Xinliang,9,4)数值振荡的定量描述 总变差,对于离散函数uj 定义总变差:,单调函数,振荡函数,j=1,j=N,含义:反映了振荡的剧烈程度,双曲型守恒方程,特点:沿特征线,u不变,特征线未相交总变差不变,特征线相交 总变差减小,结论:单个双曲型方程,总变差不增(Total Variat
6、ion Diminishing:TVD),Copyright by Li Xinliang,10,2 概念:单调格式、保单调格式与TVD格式,n时刻:单调函数,j=1,j=N,n+1时刻:仍是单调函数,j=1,j=N,设n时刻 是单调的,如果n+1时刻的解 仍保证单调,则称该格式为保单调格式。,保单调格式,基本结论:常系数的单调格式只能是一阶 单调格式必是保单调的;线性格式,单调与保单调等价,格式:如果满足 则称其为单调格式。,单调格式:,单调格式,保单调格式:,TVD格式,总变差不增,TVD,保单调,单调,Copyright by Li Xinliang,11,3.TVD格式的理论基础 Ha
7、rten定理,Harten定理:,如果差分格式可写成如下形式:,且,则格式(1)是TVD格式,(1),可验证:Roe格式是TVD格式,保证“系数非负”,含义:“单调格式必是TVD格式”,Copyright by Li Xinliang,12,例:,考虑线性单波方程:,试讨论如下 Lax-Wendroff 格式,二阶中心,人工粘性,是否满足Harten条件,常系数的单调格式 只有一阶精度,对比条件:,不满足Harten 条件,Copyright by Li Xinliang,13,知识回顾:Lax-Wendroff 格式,Taylor展开,写出修正方程,时-空二阶精度,巧妙添加人工粘性,不但克服
8、了不稳定性,而且抵消了时间误差,提高了时间精度,类似方法:Beam-Warming 格式,人工粘性,二阶精度迎风差分,人工粘性,且提高时间精度,特点:全离散、时刻耦合,Copyright by Li Xinliang,14,4.构建TVD 格式,思路:对现有格式进行改造,使之符合Harten条件,通常在Roe、L-W、B-M(或其组合)基础上改进80年代初、这些格式是主流,原格式(2阶)=1阶迎风+修正项,新格式=1阶迎风+限制函数*修正项,1.以二阶中心及二阶迎风格式为基础的改造,2阶迎风,2阶中心,2个候选格式:,思路1:两个里面选一个(GVC2,NND2)思路2:利用二者的组合,改造、新
9、格式,二阶迎风,二阶中心,Copyright by Li Xinliang,15,显然 格式为2 阶中心可验证:格式为2阶迎风,新格式:,二者组合仍为二阶,根据Harten定理,可知,时,可满足TVD性质,(2)精度条件,二阶精度区,TVD区,二阶精度TVD区(二者交集),Copyright by Li Xinliang,16,限制器(limiter),二阶中心,二阶迎风,GVC2 格式,NND2 格式,GVC2与NND2格式的限制器,Copyright by Li Xinliang,17,常用的限制器,Minmod型;,Superbee型,Van Leer型,其他:如Van Albada,C
10、opyright by Li Xinliang,18,概念:保单调区,1阶迎风的预测值,2阶中心的修正量,2阶迎风的修正量,精度差,但鲁棒性好,精度高,但有些情况下预测结果“不靠谱”,作为“标杆”检验高阶修正量是否可用,趋势相反时,不可用;相差超过2倍时,不可用,Copyright by Li Xinliang,19,历史上,TVD格式是在Roe、L-W、B-M(或其组合)基础上改进80年代初、这些格式是主流,2 以 L-W格式为基础改造的格式,L-W,引入限制函数(限制器),1阶迎风部分,修正项,Copyright by Li Xinliang,20,显然 格式为LW(2 阶)可验证:格式为
11、B-M(2阶),新格式=1阶迎风+j*(LW格式-1阶迎风),新格式:,LW,BM均为线性格式,二者组合仍为二阶,根据Harten定理,可知,时,可满足TVD性质,(2)精度条件,Beam-Warming,二阶精度区,TVD区,二阶精度TVD区(二者交集),Copyright by Li Xinliang,21,5.2 其他激波捕捉格式简介,1.Godnov格式,思路:利用精确Riemann解难点:精确Riemann解要求间断两侧物理量为常数 对策:采用分片常数代替原先的函数,方法:1)采用分片常数代替原先的函数 即假设xj-1/2,xj+1/2 区间物理量为xj点上的值 2)在每个间断处,精
12、确求解Riemann问题,得到Dt时刻物理量的分布。(假设Dt足够小,各间断之间无相互影响,因此可独立求解)。3)在区域xj-1/2,xj+1/2 上平均,得到Dt时刻xj点上物理量的值。4)重复1-3,直到指定时刻。,j-1 j j+1,间断1 间断2 间断3,2.NND 格式,“在二阶迎风与二阶中心格式中选一个”“选接近一阶迎风的”如果二阶中心与二阶迎风给出的修正趋势相反,干脆不修正。,Minmod(a,b):a,b 符号相同时,取绝对值小的;符号相反时,取0.,k=1/3 三阶迎风,k=0,k=-1,Copyright by Li Xinliang,23,2.MUSCL格式(Van Le
13、er),二阶迎风,Formm格式,k=1 二阶中心,1阶迎风,修正部分,间断处都会产生振荡,思路:振荡由修正项引起,需要对修正项进行限制,Copyright by Li Xinliang,24,新格式,函数 minmod(a,b)a,b 符号相反,则返回0 符号相同,则返回绝对值小的,1阶迎风,修正部分,j-1,j,j+1,j-2,j+1/2,思路:修正部分是由 j-1,j,j+1 三点计算而得,是 与 的插值,旧格式,二者的组合:j-1,j 计算;j,j+1计算,如果两个修正方案趋势(符号)相反,干脆不修正 如果趋势相同,则取(绝对值)最小者 避免振荡,两个修正方案,选前者:二阶迎风 选后者
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中科院 计算 流体力学 最新 讲义 CFD115 讲差分 方法
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5171706.html