两个基本计数原理二.ppt
《两个基本计数原理二.ppt》由会员分享,可在线阅读,更多相关《两个基本计数原理二.ppt(48页珍藏版)》请在三一办公上搜索。
1、1.1 两个基本计数原理(二),什么是分类计数原理?,什么是分步计数原理?,应用这两个原理时应注意什么问题?,分类计数原理(加法原理)做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法。那么完成这件事共有 N=m1+m2+mn种不同的方法。,分步计数原理(乘法原理)做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事有 N=m1m2mn种不同的方法。,分类计数原理(加法原理)中,“完成一件事,有n类方式”,即每种方式都可以独立地完
2、成这件事。进行分类时,要求各类方式彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事。只有满足这个条件,才能直接用加法原理,否则不可以。,分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事。如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理。,2.如图,该电路,从A到B共有多少条不同的线路可通电?,A,B,解:从总体上看由A到B的通电线路可分三类,第一类,m1=3 条 第二类,m2=1
3、 条 第三类,m3=22=4,条 所以,根据分类计数原理,从A到B共有 N=3+1+4=8 条不同的线路可通电。,当然,也可以把并联的4个看成一类,这样也可分2类求解。,.,A,B,A,B,m1,m1,m2,m2,mn,mn,点评:我们可以把分类计数原理看成“并联电路”;分步计数原理看成“串联电路”。如图:,如图,一蚂蚁沿着长方体的棱,从它的一个顶点爬到相对的另一个顶点的最近路线共有多少条?,课堂练习3,解:如图,从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法 从局部上看每类又需两步完成,所以,第一类,m1=12=2 条 第二类,m2=12=2 条 第三类,m3=12=2 条根据分类计数原
4、理,从顶点A到顶点C1最近路线共有 N=2+2+2=6 条。,4.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?,甲地,乙地,丙地,丁地,解:从总体上看,由甲到丙有两类不同的走法,第一类,由甲经乙去丙,又需分两步,所以 m1=23=6 种不同的走法;第二类,由甲经丁去丙,也需分两步,所以 m2=42=8 种不同的走法;所以从甲地到丙地共有 N=6+8=14 种不同的走法。,例1、某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴和会小号的各一人,有多少种不
5、同的选法?,例2、用红、黄、蓝不同颜色的旗各三面,每次升一面、两面、三面在某一旗杆上纵向排列,共可以组成多少种不同的信号?,提示:对于有些较“复杂”的问题,往往不是单纯的“分类”、“分步”就可解决的,而往往将两者结合使用,一般是先“分类”,再在每一类中进行“分步”。,例3、为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位均为0到9这10个数字中的一个,或是从A到Z这26个英文字母中的1个。这样的密码共有多少个?(3)密码为4到6位,每位均为0到9这10个数字中的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 两个 基本 计数 原理
链接地址:https://www.31ppt.com/p-5163875.html