第8章相关与回归分析.ppt
《第8章相关与回归分析.ppt》由会员分享,可在线阅读,更多相关《第8章相关与回归分析.ppt(66页珍藏版)》请在三一办公上搜索。
1、第8章 相关与回归分析,8.1 相关与回归的基本概念8.2 简单线性相关与回归分析8.3 多元线性相关与回归分析8.4 非线性相关与回归分析,学习目标,1.变量间的相关关系与相关系数的计算2.总体回归函数与样本回归函数3.线性回归的基本假定4.简单线性回归参数的估计与检验5.多元线性回归参数的估计与检验6.多个变量的线性相关关系:复相关系数和偏相 关系数7.常用的可以转换为线性回归的非线性函数8.非线性相关指数,实例1:中国妇女生育水平的决定因素是什么?,妇女生育水平除了受计划生育政策影响以外,还可能与社会、经济、文化等多种因素有关。1.影响中国妇女生育率变动的因素有哪些?2.各种因素对生育率
2、的作用方向和作用程度如何?3.哪些因素是影响妇女生育率主要的决定性因素?4.如何评价计划生育政策在生育水平变动中的作用?5.计划生育政策与经济因素比较,什么是影响生育率的 决定因素?6.如果某些地区的计划生育政策及社会、经济、文化 等因素发生重大变化,预期对这些地区的妇女生育 水平会产生怎样的影响?,据世界卫生组织统计,全球肥胖症患者达3亿人,其中儿童占2200万人,11亿人体重过重。肥胖症和体重超常早已不是发达国家的“专利”,已遍及五大洲。目前,全球因”吃”致病乃至死亡的人数已高于因饥饿死亡的人数。(引自光明日报刘军/文)问题:肥胖症和体重超常与死亡人数真有显著 的数量关系吗?这些类型的问题
3、可以运用相关分析与回归分析的方法去解决。,实例2:全球吃死的人比饿死的人多?,8.1 相关与回归的基本概念,一、变量间的相互关系二、相关关系的类型三、相关分析与回归分析,一、变量间的相互关系,确定性的函数关系 Y=f(X)不确定性的统计关系相关关系 Y=f(X)+(为随机变量)没有关系 变量间关系的图形描述:坐标图(散点图),相关关系的类型,从涉及的变量数量看 简单相关 多重相关(复相关)从变量相关关系的表现形式看 线性相关散布图接近一条直线(左图)非线性相关散布图接近一条曲线(右图),从变量相关关系变化的方向看正相关变量同方向变化 A 同增同减(A)负相关变量反方向变化 一增一减(B)B 从
4、变量相关的程度看 完全相关(B)不完全相关(A)C 不相关(C),相关关系的类型,相关分析与回归分析,回归的古典意义:高尔顿遗传学的回归概念 父母身高与子女身高的关系:无论高个子或低个子的子女 都有向人的平均身高回归的 趋势,回归的现代意义,一个因变量对若干解释变量依存关系的研究回归的目的(实质):由固定的自变量去估计因变量的平均值,相关分析与回归分析的联系,共同的研究对象:都是对变量间相关关系的分析只有当变量间存在相关关系时,用回归分析去寻求相关的具体数学形式才有实际意义相关分析只表明变量间相关关系的性质和程度,要确定变量间相关的具体数学形式依赖于回归分析 相关分析中相关系数的确定建立在回归
5、分析的基础上,82 简单线性相关与回归分析,一、简单线性相关系数及检验二、总体回归函数与样本回归函数三、回归系数的估计四、简单线性回归模型的检验 五、简单线性回归模型预测,一、简单线性相关系数及检验,总体相关系数 对于所研究的总体,表示两个相互联系变量相关程度 的总体相关系数为:总体相关系数反映总体两个变量X和Y的线性相关程度。特点:对于特定的总体来说,X和Y的数值是既定的 总体相关系数是客观存在的特定数值。,样本相关系数,通过X和Y 的样本观测值去估计样本相关系数变量X和Y的样本相关系数通常用 表示 特点:样本相关系数是根据从总体中抽取的随机样本 的观测值计算出来的,是对总体相关系数的估 计
6、,它是个随机变量。,相关系数的特点:,相关系数的取值在-1与1之间。当r=0时,表明X与Y没有线性相关关系。当 时,表明X与Y存在一定的线性相关关系:若 表明X与Y 为正相关;若 表明X与Y 为负相关。当 时,表明X与Y完全线性相关:若r=1,称X与Y完全正相关;若r=-1,称X与Y完全负相关。,使用相关系数的注意事项:,X和Y 都是相互对称的随机变量,所以相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。,相关系数的检验,为什么要检验?样本相关系数是随抽样而变动的随机变量,相关系数的统计显著性还有待检验。检验
7、的依据:如果X和Y都服从正态分布,在总体相关系数 的假设下,与样本相关系数 r 有关的 t 统计量服从自由度为n-2的 t 分布:,相关系数的检验方法,给定显著性水平,查自由度为 n-2 的临界值 若,表明相关系数 r 在统计上是显著的,应否定 而接受 的假设;反之,若,应接受 的假设。,二、总体回归函数与样本回归函数,若干基本概念 Y的条件分布:Y在X取某固定值条件下的分布。对于X的每一个取值,都有Y的条件期望与之对应,在坐标图上 Y的条件期望的点随X而变化的轨迹所形成的直线或曲线,称为回归线。如果把Y的条件期望 表示为X的某种函数:,这个函数称为回归函数。如果其函数形式是只有一个自变量的线
8、性函数,如,称为简单线性回归函数。,总体回归函数(PRF),概念:将总体因变量Y的条件均值表现为自变量X的某种函数,这个函数称为总体回归函数(简记为PRF)。表现形式:(1)条件均值表现形式(2)个别值表现形式(随机设定形式),样本回归函数(SRF),概念:Y的样本观测值的条件均值随自变量X而变动的轨迹,称为样本回归线。如果把因变量Y的样本条件均值表示为自变量X的某种函数,这个函数称为样本回归函数(简记为SRF)。表现形式:线性样本回归函数可表示为 或者,样本回归函数与总体回归函数的关系 相互联系,样本回归函数的函数形式应与设定的总体回归函数的函数形式一致。和 是对总体回归函数参数的估计。是对
9、总体条件期望 的估计 残差 e 在概念上类似总体回归函数中的随机 误差u。回归分析的目的:用样本回归函数去估计总体回归函数。,样本回归函数与总体回归函数的关系 相互区别,总体回归函数虽然未知,但它是确定的;样本回归线随抽样波动而变化,可以有许多条。样本回归线还不是总体回归线,至多只是未知总体 回归线的近似表现。总体回归函数的参数虽未知,但是确定的常数;样本回归函数的参数可估计,但是随抽样而变化的随机变量。总体回归函数中的 是不可直接观测的;而样本回归函数中的 是只要估计出样本回归的参数就可以计算的数值。,三、回归系数的估计,回归系数估计的思想:为什么只能对未知参数作估计?参数是未知的、不可直接
10、观测的、不能精确计算的 能够得到的只是变量的样本观测值结论:只能通过变量样本观测值选择适当方法去近似 地估计回归系数。前提:u是随机变量其分布性质不确定,必须作某些 假定,其估计才有良好性质,其检验才可进行。原则:使参数估计值“尽可能地接近”总体参数真实值,简单线性回归的基本假定,假定1:零均值假定。假定2:同方差假定。假定3:无自相关假定。假定4:随机扰动 与自变量 不相关。假定5:正态性假定,回归系数的最小二乘估计,基本思想:希望所估计的 偏离实际观测值 的残差 越小越好。可以取残差平方和 作为衡量 与 偏离程度的标准最小二乘准则估计式:,最小二乘估计的性质 高斯马尔可夫定理,前提:在基本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相关 回归 分析

链接地址:https://www.31ppt.com/p-5136248.html