人工智能与数据挖掘教学课件lect312.ppt
《人工智能与数据挖掘教学课件lect312.ppt》由会员分享,可在线阅读,更多相关《人工智能与数据挖掘教学课件lect312.ppt(26页珍藏版)》请在三一办公上搜索。
1、6/6/2023,AI&DM,1,Chapter 3 Basic Data Mining Techniques,3.1 Decision Trees(For classification),佐潦臭畏螟迅箭转截两逛哟诬叛常捅潞凋死设锭惊燎券泉跋椭晒倍颂礁端人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12,6/6/2023,AI&DM,2,Introduction:ClassificationA Two-Step Process,1.Model construction:build a model that can describe a set of pre
2、determined classesPreparation:Each tuple/sample is assumed to belong to a predefined class,labeled by the output attribute or class label attributeThis set of examples is used for model construction:training setThe model can be represented as classification rules,decision trees,or mathematical formu
3、lae Estimate accuracy of the modelThe known label of test sample is compared with the classified result from the modelAccuracy rate is the percentage of testing set samples that are correctly classified by the modelNote:Test set is independent of training set,otherwise over-fitting will occur2.Model
4、 usage:use the model to classify future or unknown objects,皋膝噎俐肘蛋倦瘟捌育狈馏审阉砂丽增躁戎幌恕钮镣臃铝蛮颈利个傈键届人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12,6/6/2023,AI&DM,3,Classification Process(1):Model Construction,TrainingData,ClassificationAlgorithms,IF rank=professorOR years 6THEN tenured=yes,Classifier(Model),坏禾
5、育淌雌饥唐帘自准涛奇螟其犊枫叔蔚干就龋邀移喉路揍驻畴恃蛀馈婚人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12,Classification Process(2):Use the Model in Prediction,Classifier,TestingData,Unseen Data,(Jeff,Professor,4),Tenured?,纲君啥终寡肃韶舀绥瑚酵哇牲陪屡糙挺魏焙范蝗锰饺锭婶贿温伶益具烁筹人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12,6/6/2023,AI&DM,5,1 Example(1):T
6、raining Dataset,An example from Quinlans ID3(1986),篓兆掩鼻疲慎坠捍型仓磁遗散考砸皮睫赘米工羊村托钨炉殉芬台乖诊哥膜人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12,6/6/2023,AI&DM,6,1 Example(2):Output:A Decision Tree for“buys_computer”,age?,overcast,student?,credit rating?,no,yes,fair,excellent,=30,40,no,no,yes,yes,yes,30.40,仑强骸头梗谈滑虱弘
7、戌肆异征兵善歇晶寒陨教临织型汐皂侨砧粳碗柯蛛锐人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12,6/6/2023,AI&DM,7,2 Algorithm for Decision Tree Building,Basic algorithm(a greedy algorithm)Tree is constructed in a top-down recursive divide-and-conquer mannerAt start,all the training examples are at the root Attributes are catego
8、rical(if continuous-valued,they are discretized in advance)Examples are partitioned recursively based on selected attributesTest attributes are selected on the basis of a heuristic or statistical measure(e.g.,information gain)Conditions for stopping partitioningAll samples for a given node belong to
9、 the same classThere are no remaining attributes for further partitioning majority voting is employed for classifying the leafThere are no samples leftReach the pre-set accuracy,港哟已诡侣建裤咨戴鳖衅顿坍阔秉密砖毡曝号氰肿粱踏嚣功侮表陆你传舷人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12,6/6/2023,AI&DM,8,Information Gain(信息增益)(ID3/C
10、4.5),Select the attribute with the highest information gainAssume there are two classes,P and NLet the set of examples S contain p elements of class P and n elements of class NThe amount of information,needed to decide if an arbitrary example in S belongs to P or N is defined as,意辰晤佑瘦攻霖渡烂缉褪掖箔毯吃煌痔体啡狐
11、扁楷毗掘胆绘镶稳洋管篡卢人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12,6/6/2023,AI&DM,9,Information Gain in Decision Tree Building,Assume that using attribute A,a set S will be partitioned into sets S1,S2,Sv If Si contains pi examples of P and ni examples of N,the entropy(熵),or the expected information needed to
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 数据 挖掘 教学 课件 lect312
链接地址:https://www.31ppt.com/p-5126739.html