初中数学三角形知识点总结.doc
《初中数学三角形知识点总结.doc》由会员分享,可在线阅读,更多相关《初中数学三角形知识点总结.doc(7页珍藏版)》请在三一办公上搜索。
1、初中数学三角形知识点总结 初中数学三角形知识点总结等边三角形等边三角形是锐角三角形,等边三角形的内角都相等,且均为60。等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。等边三角形的重要数据角和边的数量 3内角的大小 60等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)等边三角形内任意一点到三边的距离之和为定值(等于其高)三角形的垂心锐角三角形垂心在三角形内部。直角三角形垂心在三角形直角顶点。钝角三角形垂心在三角形外部。垂心是从三角形的各个顶点向其对边所
2、作的三条垂线的交点。三角形三个顶点,三个垂足,垂心这7个点可以得到6组四点共圆。三角形上作三高,三高必于垂心交。高线分割三角形,出现直角三对整,直角三角有十二,构成九对相似形,四点共圆图中有,细心分析可找清,三角形垂心的性质设ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;3、 垂心H关于三边的对称点,均在ABC的外接圆上。4、 ABC中,有六组四点
3、共圆,有三组(每组四个)相似的直角三角形,且AHHD=BHHE=CHHF。5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)。6、 ABC,ABH,BCH,ACH的外接圆是等圆。7、 在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/APtanB+AC/AQtanC=tanA+tanB+tanC。8、 设O,H分别为ABC的外心和垂心,则BAO=HAC,ABH=OBC,BCO=HCA。9、 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。10、 锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在
4、原三角形的边上)中,以垂足三角形的周长最短(施瓦尔兹三角形,最早在古希腊时期由海伦发现)。11、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。12、 设锐角ABC内有一点P,那么P是垂心的充分必要条件是PBxPCxBC+PBxPAxAB+PAxPCxAC=ABxBCxCA。13、设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为AEF,BDF,CDE的垂心,则DEFH1H2H3。14、三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。温馨提示:上面的很多三角形的垂心性质知识
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 三角形 知识点 总结

链接地址:https://www.31ppt.com/p-512241.html