相似三角形复习(几何证明).ppt
《相似三角形复习(几何证明).ppt》由会员分享,可在线阅读,更多相关《相似三角形复习(几何证明).ppt(12页珍藏版)》请在三一办公上搜索。
1、相似三角形复习,2、判定定理1:两个角对应相等,两三角形相似。3、判定定理2:两边对应成比例且夹角相等,两三角形相似。4、判定定理3:三边对应成比例,两三角形相似。5、相似三角形的传递性。,反思回顾一:判定两个三角形相似的主要方法:,1、预备定理:DEBC,ADEABC。,反思回顾二:相似三角形的性质:,1、相似三角形对应角相等,对应边成比例。2、相似三角形的周长之比等于相似比,面积之比等于相似比的平方。3、相似三角形对应边上的高线、中线、对应角平分线之比都等于相似比。,4、如图,已知CA=8,CB=6,AB=5,CD=4,点E是BC上一点。(1)若CE=3,则DE=_.,(2)若CE=,则D
2、E=_.,1、如图,AB与CD相交于点P,A=D,若PA3,PB=4,PC=2,则PD=_,2、如图,在ABC中,D为AC边上一点DBC=A,BC=,AC=3,则CD的长为_,基础部分,2.5,6,3、如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点若AD=3,BC=9,则GO:BG=_,2,1:2,蝴蝶型,特殊斜A型公共边角型,X型,提炼总结:相似三角形中常用基本图形:,正A型,斜A型,特殊斜A型公共边角型,提炼总结:相似三角形中常用基本图形:,正A型,斜A型,特殊斜A型公共边角型,X型,提炼总结:相似三角形中常用基本图形:,正A型,斜A型,特殊斜A型公共边角型,字母图(双垂直型
3、),X型,一线三等角(三垂直型),蝴蝶型,1、点E是四边形ABCD的对角线BD上一点,且BAC=BDC=DAE.(1)求证:ABEACD(2)求证:BCAD=DEAC,要点部分(对学、群学),第二问通常怎样去找思路?,2、如图,在ABC中,AB=AC,点D、E分别是AC、AB的中点,DFAC,DF与CE相交于点F,AF的延长线与BD相交于点G.(1)求证:AD2=DGBD(2)联接CG,求证:ECB=DCG,要点部分(对学、群学),怎样证得角相等?相似类23题怎样从第2问的结论得到思路?,3、如图,ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且BADBGD C,联结AG.(1)求证:BDBC=BGBE;(2)求证:BGABAC.,拓展部分(展示),怎样快速得到第2问思路?,分析要证明结论成立,只需要哪些条件就可以了,审题,由已知条件分析(联想)出显而易见的条件,几何搭桥法,分类思想,课堂要点:,转化思想,结合前面分析出的结论,看能否得到证明所需条件,最后理清思路,即得证,实战演练,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 复习 几何 证明
链接地址:https://www.31ppt.com/p-5094041.html