圈闭和油气藏类型的识别.docx
《圈闭和油气藏类型的识别.docx》由会员分享,可在线阅读,更多相关《圈闭和油气藏类型的识别.docx(16页珍藏版)》请在三一办公上搜索。
1、圈闭和油气藏类型的识别练习要求:(一)阅读各图构造等高线及储层分布图。在平面图上找出溢出点位置(用字母C表示),圈 定闭合面积,计算闭合高度,确定圈闭及油气藏类型,并写出结果。(二)结合储集层分布的变化及油气水分布情况,绘制给定剖面线的圈闭和油气藏横剖面。练习题:图11某油层顶面构造图1一正断层;2油层顶面等高线;3产气井;4产油井;5产水井;6一剖面线;A区:油气藏类型:背斜油气藏;闭合度:h=70m ;油柱高度:虬=40m ;气柱高度:hg= 35m ;B区:油气藏类型:断块油气藏;闭合度:h=85m;油柱高度:ho=40m;气柱高度:hg=J; (?)E区:油气藏类型:断块油气藏;闭合度
2、:h=45m;油柱高度:ho=20m;气柱高度:hg=1血;图12某油层顶面CD剖面图图21某地层底面构造图及其下伏油层等厚度图1某地层顶面等高线(m); 2一储层等高线(m); 3一产气井;4产油井;5产水井;6一剖面线 油气藏类型:透镜体油气藏;闭合度:h=160m.;油柱高度:ho=80m;气柱高度:hg= 40m;图22某油层FE剖面线横剖面图纵比例尺:1: 4000024 kI A1 I124图31某区地层底面构造图及砂层等厚度图1一砂层所在地层顶面等高线(m); 2一砂层尖灭线;3一砂层等厚线(m); 4一剖面线图32某区地层A-B剖面线横剖面图 纵比例尺:1: 40001 I 1
3、 24/ 34图41某区砂层构造图及不整合面等高线图1不整合面等高线(m); 2某砂层顶面等高线(m); 3某砂层侵蚀终止线;4剖面线图实42某区砂层PQ剖面线横剖面图纵比例尺:1: 5000图51某区地层顶面构造图及砂层等厚度图堵房会无线图61某区地层顶面构造及砂层分布图蜡屋所在地京璃而 枸鸯等扃城封宓性正卧崖储房钥厚藐Cm、1地层顶面等高线(m); 2一砂层尖灭线;3一砂层等厚线A区:油气藏类型:;闭合度:h=;B区:油气藏类型:;闭合度:h=;1-某地层顶面构造等高线(m); 2一砂层尖灭线;3一正断层A区:油气藏类型:;闭合度:h=;B区:油气藏类型:;闭合度:h=;D区:油气藏类型:
4、;闭合度:h=;图71某油田砂层顶面构造及油藏分布图1油水界线;砂层哩高线(m;3一剖面线永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式 2008-11-07 来源:internet 浏览:504主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编 码器,旋转变压器等。为支持永磁交流伺服驱动的矢量控制,这些位置反馈元件 就必须能够为伺服驱动器提供永磁交流伺服电机的永磁体磁极相位,或曰电机电 角度信息,为此当位置反馈元件与电机完成定位安装时,就有必要调整好位置反 馈元件的角度检测相位与电机电角度相位之间的相互关系,这种调整可以称作电 角度相位初始化,也可以称作编码器
5、零位调整或对齐。下面列出了采用增量式编 码器,绝对式编码器,正余弦编码器,旋转变压器等位置反馈元件的永磁交流伺 服电机的传感器检测相位与电机电角度相位的对齐方式。增量式编码器的相位对齐方式在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号 的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波 脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ 输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期 数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信 号的相位与转子磁极相位,或曰电角度相位之间的对齐方法
6、如下:1. 用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;2. 用示波器观察编码器的U相信号和Z信号;3. 调整编码器转轴与电机轴的相对位置;4. 一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳 定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对 位置关系;5. 来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号 都能稳定在高电平上,则对齐有效。撤掉直流电源后,验证如下:1. 用示波器观察编码器的U相信号和电机的UV线反电势波形;2. 转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由
7、低到 高的过零点重合,编码器的Z信号也出现在这个过零点上。上述验证方法,也可以用作对齐方法。需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线 反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30 度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势 的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此 时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对 齐,为达到此目的,可以:1. 用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入
8、电 机的UVW三相绕组引线;2. 以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U 相反电势波形;3. 依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器 外壳与电机外壳的相对位置;4. 一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由 低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关 系,完成对齐。由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内 的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。绝对式编码器的相位对齐方式绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈 内对齐编
9、码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的 引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编 码器和电机的相位对齐,方法如下:1. 用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;2. 用示波器观察绝对编码器的最高计数位电平信号;3. 调整编码器转轴与电机轴的相对位置;4. 一边调整,一边观察最高计数位信号的跳变沿,直到跳变沿准确出现在电 机轴的定向平衡位置处,锁定编码器与电机的相对位置关系;5. 来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,跳变沿 都能准确复现,则对齐有效。这类绝对式编码器
10、目前已经被采用EnDAT,BiSS,Hyperface等串行协议, 以及日系专用串行协议的新型绝对式编码器广泛取代,因而最高位信号就不符存 在了,此时对齐编码器和电机相位的方法也有所变化,其中一种非常实用的方法 是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位, 具体方法如下:1. 将编码器随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外 壳与电机外壳;2. 用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;3. 用伺服驱动器读取绝对编码器的单圈位置值,并存入编码器内部记录电机 电角度初始相位的EEPROM中;4.
11、 对齐过程结束。由于此时电机轴已定向于电角度相位的-30度方向,因此存入的编码器内部 EEPROM中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意 时刻的单圈位置检测数据与这个存储值做差,并根据电机极对数进行必要的换 算,再加上-30度,就可以得到该时刻的电机电角度相位。这种对齐方式需要编码器和伺服驱动器的支持和配合方能实现,日系伺服的 编码器相位之所以不便于最终用户直接调整的根本原因就在于不肯向用户提供 这种对齐方式的功能界面和操作方法。这种对齐方法的一大好处是,只需向电机 绕组提供确定相序和方向的转子定向电流,无需调整编码器和电机轴之间的角度 关系,因而编码器可以以任意初始
12、角度直接安装在电机上,且无需精细,甚至简 单的调整过程,操作简单,工艺性好。如果绝对式编码器既没有可供使用的EEPROM,又没有可供检测的最高计 数位引脚,则对齐方法会相对复杂。如果驱动器支持单圈绝对位置信息的读出和 显示,则可以考虑:1. 用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;2. 利用伺服驱动器读取并显示绝对编码器的单圈位置值;3. 调整编码器转轴与电机轴的相对位置;4. 经过上述调整,使显示的单圈绝对位置值充分接近根据电机的极对数折算 出来的电机-30度电角度所应对应的单圈绝对位置点,锁定编码器与电机的相对 位置关系;5. 来回
13、扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折 算位置点都能准确复现,则对齐有效。如果用户连绝对值信息都无法获得,那么就只能借助原厂的专用工装,一边 检测绝对位置检测值,一边检测电机电角度相位,利用工装,调整编码器和电机 的相对角位置关系,将编码器相位与电机电角度相位相互对齐,然后再锁定。这 样一来,用户就更加无从自行解决编码器的相位对齐问题了。个人推荐采用在EEPROM中存储初始安装位置的方法,简单,实用,适应 性好,便于向用户开放,以便用户自行安装编码器,并完成电机电角度的相位整 定。正余弦编码器的相位对齐方式普通的正余弦编码器具备一对正交的sin,cos 1Vp-p信号,相
14、当于方波信号 的增量式编码器的AB正交信号,每圈会重复许许多多个信号周期,比如2048 等;以及一个窄幅的对称三角波Index信号,相当于增量式编码器的Z信号,一 圈一般出现一个;这种正余弦编码器实质上也是一种增量式编码器。另一种正余 弦编码器除了具备上述正交的sin、cos信号外,还具备一对一圈只出现一个信号 周期的相互正交的1Vp-p的正弦型C、D信号,如果以C信号为sin,则D信号 为cos,通过sin、cos信号的高倍率细分技术,不仅可以使正余弦编码器获得比 原始信号周期更为细密的名义检测分辨率,比如2048线的正余弦编码器经2048 细分后,就可以达到每转400多万线的名义检测分辨率
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圈闭 油气藏 类型 识别

链接地址:https://www.31ppt.com/p-5086325.html