各种缺陷分析与产生原因.docx
《各种缺陷分析与产生原因.docx》由会员分享,可在线阅读,更多相关《各种缺陷分析与产生原因.docx(23页珍藏版)》请在三一办公上搜索。
1、锻造成形过程中的缺陷及其防止方法一、钢锭的缺陷钢锭有下列主要的缺陷:(1)缩孔和疏松钢锭中缩孔和疏松是不可避免的缺陷,但它们出现的部位可以控制。钢锭中顶端的保温冒口,造成 钢液缓慢冷却和最后凝固的条件,一方面使锭身可以得到冒口中钢液的补缩,另一方面使缩孔和疏松集 中于此处,以便锻造时切除。(2)偏析钢锭中各部分化学成分的不均匀性称为偏析。偏析分为枝晶偏析和区域偏析两种,前者可以通过锻 造以及锻后热处理得到消除,后者只能通过锻造来减轻其影响,使杂质分散,使显微孔隙和疏松焊和。(3)夹杂不溶于金属基体的非金属化合物称为夹杂。常见的夹杂如硫化物、氧化物、硅酸盐等。夹杂使钢锭 锻造性能变化,例如当晶界
2、处低熔点夹杂过多时,钢锭锻造时会因热脆而锻裂。夹杂无法消除,但可以 通过适当的锻造工艺加以破碎,或使密集的夹杂分散,可以在一定程度上改善夹杂对锻件质量的影响。(4)气体钢液中溶解有大量气体,但在凝固过程中不可能完全析出,以不同形式残存在钢锭内部。例如氧与 氮以氧化物、氮化物存在,成为钢锭中夹杂。氢是钢中危害最大的气体,它会引起“氢脆”,使钢的塑 性显著下降;或在大型锻件中造成“白点”,使锻件报废。(5)穿晶当钢液浇注温度较高,钢锭冷却速度较大时,钢锭中柱状晶会得到充分的发展,在某些情况下甚至 整个截面都形成柱状晶粒,这种组织称为穿晶。在柱状晶交界处(如方钢锭横截面对角线上),常聚集 有易熔夹杂
3、,形成“弱面”,锻造时易于沿这些面破裂。在高合金钢锭中容易遇到这种缺陷。(6)裂纹由于浇注工艺或钢锭模具设计不当,钢锭表面会产生裂纹。锻造前应将裂纹消除,否则锻造时由于 裂纹的发展导致锻件报废。(7)溅疤当钢锭用上注法浇注时,钢液冲击钢锭模底而飞溅到钢锭模壁上,这些附着的溅沫最后不能和钢锭 凝固成一体,便成溅疤。溅疤锻造前必须铲除,否则会形成表面夹层。二、轧制或锻制的钢材中的缺陷轧制或锻制的钢材中往往存在如下缺陷:(1)裂纹和发裂裂纹是由于钢锭缺陷未清除,经过轧制或锻造使之进一步发展造成的。由于轧制或锻造的工艺规范 不当,在钢材内引起很大的内应力,也会造成裂纹。断面大、合金元素多的钢材容易产生
4、裂纹。发裂是深度为0.501.50mm的发状裂纹,它是轧制或锻造时由于钢锭皮下气泡沿变形方向被拉长 或夹杂物沿变形方向伸长而形成。发裂一般需经酸洗后才能发现。(2)伤痕和折叠伤痕是钢材表面上深约0.20.30mm的擦伤、划伤细痕。折叠一般由于轧制或锻造工艺不当造成。(3)非金属夹杂和疏松钢材中的非金属夹杂是直接由钢锭中的非金属夹杂物保留下来的。钢材锻造变形时,夹杂物聚集的 部位会形成裂纹。钢锭中的疏松,由于轧制工艺不当,仍会在钢材中保留下来。(4)白点含氢量高的大钢锭,轧制或锻造后由于冷却工艺不当,内部过饱和的氢原子析出聚集在疏松等间隙 中成为氢分子,造成巨大的压力,并与钢相变时的组织应力相叠
5、加,使钢材内部产生许多细小裂纹,即 为“白点”。但“白点”仅出现在对“白点”敏感性较强的钢种上,例如40CrNi、35CrMo、GCr15等 牌号的钢。裂纹、发裂、伤痕和折叠是表面缺陷,这些缺陷在锻造变形时会进一步发展,使锻件报废,故事先 必须清除。非金属夹杂、疏松和“白点”等是内部缺陷,有这方面缺陷的钢材根本不能使用。加热过程中的缺陷及其防止方法金属在锻造加热过程中可能产生的缺陷有氧化、脱碳、过热、过烧和开裂等。正确的加热应尽量减 少或根本防止这些缺陷的产生。一、氧化氧化是金属加热时炉气中的氧化性气体(如o2、co2、h2o、so2)与金属发生化学反应,在金属 表面形成氧化皮的现象。1、氧化
6、皮的形成过程钢材表层的铁以离子状态由里向外表面扩散,而氧化性气体中的氧以原子状态由钢材外表面经吸附 后向里层扩散。氧化皮分为三层,如图17.1所示。其最外层是含氧较高的Fe2O3,约占氧化皮厚度的10%;中间层 是粗大颗粒的Fe3O4,约占氧化皮厚度的50%;最里层是含氧较低的FeO,约占氧化皮厚度的40%。图17.1氧化皮形成过程示意图由于氧化皮的膨胀系数和钢材不同,因此较易脱落;同时氧化皮的熔点13001350C )较低,高 温时易熔化。氧化皮的脱落和熔化,使新暴露的钢料表面继续氧化,增加金属的损耗。2、氧化皮的危害(1)它直接造成了金属的损耗(称为火耗);(2)降低模锻件的表面质量;(3
7、)锻件表面附着氧化皮,热处理时导致锻件组织和性能的不均匀;(4)氧化皮的硬度较高,模锻时会加速锻模型腔的磨损,机加工时会加速刀具的损坏;(5)氧化皮呈碱性,脱落在加热炉的炉膛内会和酸性的耐火材料起化学反应,缩短加热炉寿命;(6)使模锻件增加酸洗或喷丸等清理工序。3、防止和减少氧化的具体措施火焰炉加热时为了防止或减少氧化皮的产生,可采取以下措施:(1)在确保金属加热质量的前提下,尽量采用高温下装炉的快速加热方法,缩短金属在炉内的停 留时间,特别是缩短金属在高温下的保温时间;(2)严格控制进入炉内的空气量,在燃料完全燃烧的条件下,尽可能减少过剩空气量;(3)注意消除燃料中的水分,避免水蒸气对金属表
8、面的氧化作用;(4)炉膛应保持不大的正压力,防止炉外冷空气吸入炉内;(5)操作上应做到少装炉、勤装炉及适时出炉;(6)采用少、无氧化火焰加热炉。二、脱碳脱碳是钢材表层的碳在高温下与氧化性炉气(如O2、CO2、H2O)和 H2发生化学反应,生成CO 和CH4等可燃气体而被烧掉,使钢材表层碳成分降低的现象。1、脱碳的危害(1)使锻件加工后的零件表面变软,强度和耐磨性降低;(2)使锻件加工后的零件疲劳强度降低,零件在长期交变应力作用下易发生疲劳断裂。但是,如 果脱碳层的厚度没有超过模锻件的机械加工余量,则脱碳层可随切屑除去而无危害。2、防止脱碳的具体措施坯料加热时应防止和减少脱碳,尤其对于弹簧钢、工
9、具钢和轴承钢等锻件以及精密模锻件更应尽可 能防止脱碳。火焰炉加热时防止和减少脱碳的措施有:(1)采用高温下装炉的快速加热方法,尤其应缩短坯料在加热炉内高温阶段的停留时间;(2)加热前坯料表面涂刷上保护涂层,例如石墨粉与水玻璃混合剂、硼砂水浸液、玻璃粉涂料等。三、过热钢材在加热过程中的加热温度超过某一温度,或在高温下保温时间过长,导致奥氏体晶粒急剧粗大 的现象,称为过热。钢材的过热受到加热温度和保温时间两个因素的影响,其中前者对奥氏体晶粒的粗大有更大的影 响。通常,将钢材加热时晶粒开始急剧长大的温度,称为晶粒长大的临界温度。几种钢材加热时晶粒长大的临界温度见表17-1。表17-1几种钢材加热时晶
10、粒长大的临界温度钢号晶粒长大的临界温度 (C)钢号晶粒长大的临界温度(C)25125012CrNi3A115045120038CrMoAlA1100T7115018CrNi4WA120038CrA12001Cr18Ni9Ti1200过热会引起以下问题:(1) 过热严重的钢材,锻造时边角可能产生裂纹;(2) 一般性过热的钢材,并不影响锻造;但过热的钢材锻造的锻件,其晶粒度比正常的锻件粗大, 使锻件的冲击韧性、塑性和强度等机械性能降低;(3) 过热的钢材锻造的锻件在淬火过程容易引起变形和开裂。过热的钢材,如果条件允许,可用热处理或再次锻造的方法使晶粒细化;但是有一些钢材过热后是 无法用热处理改正的
11、。所以,严格控制钢材的加热温度和保温时间,是防止过热的最好措施。四、过烧当钢材加热到接近熔点时,不仅奥氏体晶粒粗大,而且炉气中的氧化性气体渗入晶粒边界,使晶间 物质Fe、C、S发生氧化,形成易熔的共晶体,破坏了晶粒间的联系,这种现象称为过烧。过烧的钢材,强度很低,失去塑性,不能锻造;若进行锻造,在锻造时一击便破裂成碎块,断口晶 粒粗大,呈浅灰蓝色。可见,过烧的钢材是不可补救的废品,只有回炉重新冶炼。钢材的过烧温度因钢种而不同。由表17-2可见,碳钢含碳量越高,过烧温度越低,越易过烧;低 碳合金钢中含Mn、Ni、Cr等元素,使钢较易过烧。例如0.2%C的碳钢,过烧温度为1470C; 0.5%C
12、的碳钢,过烧温度为1350C; 1.1%C的碳钢,过烧温度为1180C。表17-2部分与冈材的过烧温度钢种过烧温度(C)钢种过烧温度(C)45钢1400W18Cr4V136045Cr1390W6Mo5Cr4V2127030CrNiMo14502Cr1311804Cr10Si2Mo1350Cr12MoV116050CrV1350T8125012CrNiA1350T12120060Si2Mn1350GH135合金120060Si2MnBE1400GH136合金1220GCr151350防止钢材过烧的措施有:(1) 严格控制加热温度和高温下的保温时间;(2) 控制炉内气体成分,尽量减少过剩的空气量,
13、造成弱氧化性炉气;(3)使钢材与喷火口保持一定的距离,严禁火焰与钢材直接接触,以防止局部过烧;(4)采用电阻炉加热时,钢材和电阻丝的距离不应小于100mm,以免局部过烧。五、开裂如果金属在锻造加热过程的某一温度下,其内应力(一般指拉应力)超过它的强度极限,那么就要 产生裂纹。通常内应力有温度应力、组织应力和残余应力。1、温度应力金属在加热时,其表面和中心部位之间存在温度差而引起不均匀膨胀,使表面受到压应力、中心部 位受到拉应力;这种由于温度不均匀而产生的内应力叫温度应力。温度应力的大小与金属的性质和断面温度有关。一般只有金属出现温度梯度,并处在弹性状态时, 才会产生较大的温度应力并引起裂纹。钢
14、材在温度低于500550C时处在弹性状态,在这个温度范围以下,必须考虑温度应力的影响; 当温度超过500550C时,钢的塑性比较好,变形抗力较低,通过局部塑性变形可以使温度应力得到 消除,此时就不会产生温度应力。温度应力一般都是处于三向拉应力状态。加热时圆柱坯料中心部位受到的轴向温度应力较径向和切 向温度应力都大,因此金属加热时心部产生裂纹的倾向性较大。2、组织应力具有相变的钢材在加热过程中,表层首先发生相变,心部后发生相变,并且相变前后组织的比容发 生变化,这样引起的内应力叫组织应力。在钢材加热过程中,表层首先发生相变,珠光体变为奥氏体;由于比容的减小,在表层形成拉应力, 心部为压应力。当温
15、度继续升高时,心部也发生相变;这时心部为拉应力,表层形成压应力。由于相变 时钢材已处在高温,其塑性较好,尽管产生组织应力,也会很快被松弛消失;因此在钢材的加热过程中, 组织应力无危险性。3、残余应力金属在凝固和冷却过程中,由于外层和中心的冷却次序不同,各部分间的相互牵制将产生残余应力。 外层冷却快,中心冷却慢,因此残余应力在外层为压应力,在中心部分为拉应力。当残余应力超过了金 属的强度极限时,金属将产生裂纹。综合上述,金属在锻造加热过程中,由于内应力引起的裂纹,主要是温度应力造成的。一般来讲, 裂纹发生在加热低温阶段,且裂纹发生的部位在心部。因此,钢在500550C以下加热时,应避免加 热速度
16、过快,降低装炉温度。自由锻件的主要缺陷在自由锻造生产中,锻件的缺陷产生与如下因素有关:(1)原材料及下料所产生的缺陷未加清除;(2)锻造加热不当;(3)锻造操作不当或工具不合适;(4)锻后冷却或热处理不当等。所以,在自由锻造生产过程应掌握各种情况下产生缺陷的特征,以便在发现锻件缺陷时进行综合分 析,找出锻件产生缺陷的原因,采取改进锻造工艺等措施来防止缺陷的产生。一、横向裂纹1、表面横向裂纹锻造时坯料表面出现较浅的横向裂纹,是由于钢锭皮下气泡暴露于空气中不能焊合而形成,其深度可达10mm以上。一些塑性较差的金属,相对送进量-过大时也会产生这种缺陷。h锻造时坯料表面出现较深的横向裂纹,是由于钢锭浇
17、注不当所造成。例如,钢锭模内壁有缺陷,产 生“挂锭”现象,冷却时便拉裂;高速、高温浇注,钢锭外皮成形较慢及钢锭模受到摆动;钢锭与锭模 铸合等原因。表面横向裂纹往往在锻造时第一火即出现。一经发现,大型锻件可用吹氧除去,以免裂纹在以后锻 造中扩大。2、内部横向裂纹这是锻件内部的缺陷,只能通过磁力探伤、超声波检查才能发现。产生的原因是:冷钢锭加热时在低温区加热速度过快,中心引起较大拉应力造成;或者塑性较差的高碳钢、高合金钢在锻造操作时相对送进量1 (或-)过小造成。h D二、纵向裂纹1、表面纵向裂纹在第一火拔长或镦粗时出现。产生的原因是:钢锭模内壁有缺陷或新钢锭模使用前未很好退火;浇注操作不当,例如
18、高温、高速 浇注,引起凝固外皮破裂;钢锭脱模后冷却方式不当或脱模过早;倒棱时压下量过大;钢锭轧制时产生 纵向划痕等。表面纵向裂纹锻造时一经发现立即用吹氧除去,以免裂纹在以后锻造中扩大。2、内部纵向裂纹锻件内部纵向裂纹有三种情况:(1)坯料近冒口端中心出现的纵向裂纹这是由于钢锭凝固时缩孔未集中于冒口部分,或者锻造时冒口端的切头量过少,使坯料近冒口端存 在二次缩孔或残余缩孔,锻造后引起内部纵向裂纹。(2)坯料内部出现的中空纵向裂纹这是由于平砧拔长圆截面坯料,中心部分金属受拉应力作用所致;或者由于坯料加热未透,内部温 度过低,拔长时内部沿纵向开裂等。(3)坯料内部出现的纵向“十字”裂纹这是由于拔长时
19、送进量过大,或在同一部位反复拔长所致。这种内部纵向“十字裂纹多出现在高 合金钢中。三、炸裂系坯料在锻造前加热时或锻件在冷却、热处理后表面或内部炸开而形成的裂纹。产生炸裂的原因是:由于坯料具有较高的残余应力,在未予消除的情况下,错误地采用快速加热或 不适当的冷却所致。四、自行开裂系锻件在锻造或热处理后产生,或锻后经过长时间后发生。发生的原因是:坯料在锻造过程中已形成微小裂纹,冷却或热处理使之加剧;或由于锻件内部有较 大残余应力所致。五、龟裂系锻造时在锻件表面出现的“龟甲状”浅裂纹。产生的原因是:由于钢中Cu、Sn、As、S的含量较多,或者在加热炉中加热铜料后未除尽炉渣, 溶化的铜渗入钢坯的晶界,
20、造成钢坯热脆;或者是由于坯料始锻温度过高、开始锻造时锤击过重等原 因造成。钢坯表面较浅的龟裂裂纹应及时清除,清除后不妨碍继续锻造。六、过烧系加热时氧化性气体渗入钢坯的晶界,使Fe、C、S发生氧化,形成易熔共晶体氧化物,锻造时一 锤击钢坯便破碎的现象。过烧钢坯的断裂面,晶粒粗大,失去金属的光泽。产生过烧的条件是加热温度过高,或加热时间过长,在这种条件下,易于使晶界氧化和熔融。七、晶粒度局部粗大系锻件表面或内部在局部区域发生的晶粒粗大现象。对于结构钢来说,是由于钢中残余铝的含量不 够,影响钢坯的本质晶粒度(本质晶粒度是反映钢加热时奥氏体晶粒长大倾向的一个指标,一般冶炼时 用铝脱氧的钢都是本质细晶粒
21、钢);或者是由于坯料加热温度过高,锻造比又较小,也会出现这种缺陷。 对于奥氏体类高合金钢来说,锻造时变形不均匀、工具预热温度低、坯料与工具间接触摩擦大等原因, 便会导致锻件晶粒度局部粗大的现象。八、白点系锻件内部银白色、灰白色的圆形裂纹,含Ni、Cr、Mo、W等元素的合金钢大型锻件中容易产生。其产生原因是:钢中含氢量过高,而锻后的冷却或热处理工艺不恰当,便会产生这种缺陷。九、疏松系指沿钢锭中心的疏松组织锻造时未锻合。其产生原因是:钢锭本身疏松较严重;或者是锻造比不适当、变形方案不佳;或者是相对送进量过 小,不能锻透等。十、非金属夹杂锻件内部有较集中的非金属夹杂,是一个严重缺陷。有显微非金属夹杂
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 各种 缺陷 分析 产生 原因
链接地址:https://www.31ppt.com/p-5081317.html