《二次函数的应用(最值问题)说课稿.ppt》由会员分享,可在线阅读,更多相关《二次函数的应用(最值问题)说课稿.ppt(29页珍藏版)》请在三一办公上搜索。
1、二次函数的应用(最值问题)说课稿,何时围得最大面积?,良乡三中 杨素芳,一、教学内容的分析,二、教学目标、重点、难点的确定,三、教学方法与手段的选择,四、教学过程,五、板书设计,说课内容,六、教学评价,地位与作用 课时安排 学情及学法分析,一、教学内容的分析,返回,地位与作用:,二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。,返回,地位与作用,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景
2、丰富,学生比较感兴趣,面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。,课时安排,教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。,返回,学情及学法分析,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函
3、数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。,返回,二、教学目标、重点、难点的确定,结合本节课的教学内容和学生现有的学习水平,我确定本节课的教学目标如下:,返回,1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。,2.过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题
4、中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。,二、教学目标、重点、难点的确定,3情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。,二、教学目标、重点、难点的确定,教学重点:利用二次函数y=ax2+bx+c(a0)的 图象与性质,求面积最值问题教学难点:1、正确构建数学模型。2、对函数图象顶点、端点与最值关系 的理解与应用,三、教学方法与手段的选择,返回,由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式
5、”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。,四、教学过程,(一)复习引入(二)讲解新课(三)分层评价(四)师生小结(五)布置作业,(一)复习引入,1.复习二次函数yax2+bxc(a0)的图象、顶点坐标、对称轴和最值 2.(1)求函数yx2+2x3的最值。(2)求函数yx2+2x3的最值。(0 x 3)3、抛物线在什么位置取最值?,返回,通过复习题1让学生回忆二次函数的图象和顶点坐标与最值,通过做练
6、习2复习求二次函数的最值方法;练习2(1)的设计中,定义域为xR,学生求最值容易想到顶点,无论是配方、还是利用公式都能解决;,设计思路:,设计思路:,1.复习二次函数yax2+bxc(a0)的图象、顶点坐标、对称轴和最值 2.(1)求函数yx2+2x3的最值。(2)求函数yx2+2x3的最值。(0 x 3)3、抛物线在什么位置取最值?,(一)复习引入,(2)中给了定义域0 x3,学生求最值时可能还会利用顶点公式求,忽略定义域的限制,设计此题就是为了提醒学生注意求解函数问题不能离开定义域这个条件才有意义,因为任何实际问题的定义域都受现实条件的制约,做完练习后及时让学生总结出了取最值的点的位置往往
7、在顶点和两个端点之间选择,为学习新课做好知识铺垫。,1。定义域为一切实数,顶点处取最值。2。有取值范围的在端点和顶点处取最值。,(二)讲解新课,新课分为在:1.创设情境中发现问题2.在解决问题中找出方法3.在巩固与应用中提高技能 几个环节,1.在创设情境中发现问题,做一做:请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?,做一做中,我让每一个同学动手画周长固定的矩形,然后比较谁的矩形面积最大,目的一是为激发学生的学习兴趣,二是为了引出想一想。学生通过画周长一定的矩形,会发现矩形长、宽、面积不确定,从而回想起常量与变量的概念,最值又与二次函数有关,进而
8、自己联想到用二次函数知识去解决,而不是老师告诉他用函数。,设计思路:,周长固定、要画一个面积最大的矩形,这个问题本身对学生来说具有很大的趣味性和挑战性,学生既感到好奇,又乐于探究它的结论,从而很自然地从复习旧知识过渡到新知识的学习。,1.在创设情境中发现问题,做一做:请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?,设计思路:,想一想:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大?,2、在解决问题中找出方法,我把前面矩形的周长40厘米改为40米,变成一个实际问题,目的在于让学生体会其应用价值我
9、们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。,设计思路:,3、在巩固与应用中提高技能,A,B,C,D,例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,
10、求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。,例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图
11、所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?,设计思路:,例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。,3、在巩固与应用中提高技能
12、,解:设AD=x米,则AB=(32-2x)米,设矩形面积为y米2,得到:Y=x(32-2x)=-2x2+32x错解由顶点公式得:x=8米时,y最大=128米2 而实际上定义域为11x 16,由图象或增减性可知x=11米时,y最大=110米2,10米,D,A,B,C,设计思路:,(三)分层评价,A层:(你能行!)1.指出下列函数的最大或最小值(1)y=-3(x-1)2+5,针对学困生我设计了两道题,学生只要仔细观察基本上都能完成,尝试到成功之后,他们肯定会向更高层次发起进攻。,(2),(,-),设计思路:,B层:(你肯定行!)有一块三角形余料如图所示,C=90,AC=30cm,BC=40cm,要
13、利用这块余料如图截出一个矩形DEFC,设DE=xcm,矩形的面积ycm2问矩形的边长分别是多少时,矩形的面积最大?,A,B,C,D,E,我选择了学生感兴趣的最佳下料问题,此题目有一定难度,但刚刚学完相似形,教师给出了自变量,大部分同学因该能想到解决办法,解决不了的可合作解决。,F,返回,(三)分层评价,设计思路:,C层(你一定是最棒的!)在矩形ABCD中,AB6cm,BC12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,PBQ的面积等于
14、8cm2?(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;(3)t为何值时S最小?求出S的最小值。,A,B,C,D,P,Q,(三)分层评价,设计思路:,本题设计了一个动点问题,学生见过,在这儿旧貌换新颜,让学生体会新旧知识联系,培养迁移能力。,(四)师生小结,1.对于面积最值问题应该设图形一边长为自变量,所求面积为应变量建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数的定义域。2.用函数知识求解实际问题,需要把实际问题转化为数学问题再建立函数模型求解,解要符合实际题意,要注意数与形结合。,本阶段,让学生总结这节课的收获
15、、利用函数知识解决实际问题的方法以及要注意的问题,体会科学就是生产力这句话的含义,激发学生学数学用数学的信心。,设计思路:,返回,(五)、布置作业,1.假设篱笆(虚线)的长度为15米,两面靠墙围成一个矩形,要求面积最大,如何围才能使矩形的面积最大?,2.如图34-10,张伯伯准备利用现有的一面墙和40长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。回答下面的问题:(1)设每个小矩形一边的长为xm,设四个小矩形的总面积为y,请写出用x表示y的函数表达式。(2)你能利用公式求出所得函数的图象的顶点坐标,并说出y的最大值吗?(3)若墙的长度为10米,x取何值时,养兔场的面积最大?,(五)布置作业,选做3.有一块三角形土地如图,他的底边BC=100米,高AD=80米,某单位沿着BC修一座底面是矩形的大楼,当这座大楼的地基面积最大时,这个矩形的长和宽各是多少米?,A,B,C,D,E,F,G,H,五、板书设计,六、教学评价,本节课的设计从内容上体现了数学的应用价值,问题的呈现符合学生的认知规律,组织形式突出了学生的主体地位,三维目标能落实到位,能达到预期教学效果。,谢谢指导!,
链接地址:https://www.31ppt.com/p-5080624.html