《电子技术》课件.ppt
《《电子技术》课件.ppt》由会员分享,可在线阅读,更多相关《《电子技术》课件.ppt(47页珍藏版)》请在三一办公上搜索。
1、第二篇 电子技术基础,第6章 电子技术中常用半导体器件,第7章 基本放大电路,第8章 集成运算放大器,第9章 组合逻辑电路,第10章 触发器和时序逻辑电路,第11章 存储器,第12章 数/模和模/数转换器,第一篇,半导体基本概念 二极管 单、双极刑三极管,电子技术中常用半导体器件,主要授课内容,第5章,第6章电子技术中常用半导体器件,6.1 半导体的基本知识,6.3 特殊二极管,6.4 双极型二极管,6.5 单极型三极管,6.2 半导体二极管,第1页,物质按导电能力的不同可分为导体、半导体和绝缘体3类。日常生活中接触到的金、银、铜、铝等金属都是良好的导体,它们的电导率在105Scm-1量级;而
2、像塑料、云母、陶瓷等几乎不导电的物质称为绝缘体,它们的电导率在10-2210-14Scm-1量级;导电能力介于导体和绝缘体之间的物质称为半导体,它们的电导率在10-9102Scm-1量级。自然界中属于半导体的物质有很多种类,目前用来制造半导体器件的材料大多是提纯后的单晶型半导体,主要有硅(Si)、锗(Ge)和砷化镓(GaAs)等。,6.1 半导体的基本知识,第3页,(1)通过掺入杂质可明显地改变半导体的电导率。例如,室温30C时,在纯净锗中掺入一亿分之一的杂质(称掺杂),其电导率会增加几百倍。(2)温度可明显地改变半导体的电导率。利用这种热敏效应可制成热敏器件,但另一方面,热敏效应使半导体的热
3、稳定性下降。因此,在半导体构成的电路中常采用温度补偿及稳定参数等措施。(3)光照不仅可改变半导体的电导率,还可以产生电动势,这就是半导体的光电效应。利用光电效应可制成光敏电阻、光电晶体管、光电耦合器和光电池等。光电池已在空间技术中得到广泛的应用,为人类利用太阳能提供了广阔的前景。,半导体之所以得到广泛的应用,是因为它具有以下特性。,1.半导体的独特性能,第3页,由此可以看出:半导体不仅仅是电导率与导体有所不同,而且具备上述特有的性能,正是利用这些特性,使今天的半导体器件取得了举世瞩目的发展。,2.本征半导体与杂质半导体,(1)天然的硅和锗提纯后形成单晶体,称为本征半导体,一般情况下,本征半导体
4、中的载流子浓度很小,其导电能力较弱,且受温度影响很大,不稳定,因此其用途还是很有限的。,硅和锗的简化原子模型。,这是硅和锗构成的共价键结构示意图 晶体结构中的共价键具有很强的结合力,在热力学零度和没有外界能量激发时,价电子没有能力挣脱共价键束缚,这时晶体中几乎没有自由电子,因此不能导电,第3页,当半导体的温度升高或受到光照等外界因素的影响时,某些共价键中的价电子因热激发而获得足够的能量,因而能脱离共价键的束缚成为自由电子,同时在原来的共价键中留下一个空位,称为“空穴”。,本征半导体中产生电子空穴对的现象称为本征激发。,显然在外电场的作用下,半导体中将出现两部分电流:一是自由电子作定向运动形成的
5、电子电流,一是仍被原子核束缚的价电子(不是自由电子)递补空穴形成的空穴电流。,共价键中失去电子出现空穴时,相邻原子的价电子比较容易离开它所在的共价键填补到这个空穴中来,使该价电子原来所在的共价键中又出现一个空穴,这个空穴又可被相邻原子的价电子填补,再出现空穴,如右图所示。,在半导体中同时存在自由电子和空穴两种载流子参与导电,这种导电机理和金属导体的导电机理具有本质上的区别。,第3页,在纯净的硅(或锗)中掺入微量的磷或砷等五价元素,杂质原子就替代了共价键中某些硅原子的位置,杂质原子的四个价电子与周围的硅原子结成共价键,剩下的一个价电子处在共价键之外,很容易挣脱杂质原子的束缚被激发成自由电子。同时
6、杂质原子由于失去一个电子而变成带正电荷的离子,这个正离子固定在晶体结构中,不能移动,所以它不参与导电。杂质离子产生的自由电子不是共价键中的价电子,因此与本征激发不同,它不会产生空穴。由于多余的电子是杂质原子提供的,故将杂质原子称为施主原子。,掺入五价元素的杂质半导体,其自由电子的浓度远远大于空穴的浓度,因此称为电子型半导体,也叫做N型半导体。在N型半导体中,自由电子为多数载流子(简称多子),空穴为少数载流子(简称少子);不能移动的离子带正电。,(2)杂质半导体,相对金属导体而言,本征半导体中载流子数目极少,因此导电能力仍然很低。在如果在其中掺入微量的杂质,将使半导体的导电性能发生显著变化,我们
7、把这些掺入杂质的半导体称为杂质半导体。杂质半导体可以分为N型和P型两大类。,N型半导体,第3页,不论是N型半导体还是P型半导体,虽然都有一种载流子占多数,但晶体中带电粒子的正、负电荷数相等,仍然呈电中性而不带电。,应注意:,P型半导体,在P型半导体中,由于杂质原子可以接收一个价电子而成为不能移动的负离子,故称为受主原子。,掺入三价元素的杂质半导体,其空穴的浓度远远大于自由电子的浓度,因此称为空穴型半导体,也叫做P型半导体。,在硅(或锗)晶体中掺入微量的三价元素杂质硼(或其他),硼原子在取代原晶体结构中的原子并构成共价键时,将因缺少一个价电子而形成一个空穴。当相邻共价键上的电子受到热振动或在其他
8、激发条件下获得能量时,就有可能填补这个空穴,使硼原子得电子而成为不能移动的负离子;而原来的硅原子共价键则因缺少一个电子,出现一个空穴。于是半导体中的空穴数目大量增加。空穴成为多数载流子,而自由电子则成为少数载流子。,第3页,正负空间电荷在交界面两侧形成一个由N区指向P区的电场,称为内电场,它对多数载流子的扩散运动起阻挡作用,所以空间电荷区又称为阻挡层。同时,内电场对少数载流子起推动作用,把少数载流子在内电场作用下有规则的运动称为漂移运动。,3.PN结,P型和N型半导体并不能直接用来制造半导体器件。通常是在N型或P型半导体的局部再掺入浓度较大的三价或五价杂质,使其变为P型或N型半导体,在P型和N
9、型半导体的交界面就会形成PN结。,PN结是构成各种半导体器件的基础。,左图所示的是一块晶片,两边分别形成P型和N型半导体。为便于理解,图中P区仅画出空穴(多数载流子)和得到一个电子的三价杂质负离子,N区仅画出自由电子(多数载流子)和失去一个电子的五价杂质正离子。根据扩散原理,空穴要从浓度高的P区向N区扩散,自由电子要从浓度高的N区向P区扩散,并在交界面发生复合(耗尽),形成载流子极少的正负空间电荷区如图中间区域,这就是PN结,又叫耗尽层。,第3页,空间电荷区,PN结中的扩散和漂移是相互联系,又是相互矛盾的。在一定条件(例如温度一定)下,多数载流子的扩散运动逐渐减弱,而少数载流子的漂移运动则逐渐
10、增强,最后两者达到动态平衡,空间电荷区的宽度基本稳定下来,PN结就处于相对稳定的状态。,PN结的形成演示,根据扩散原理,空穴要从浓度高的P区向N区扩散,自由电子要从浓度高的N区向P区扩散,并在交界面发生复合(耗尽),形成载流子极少的正负空间电荷区(如上图所示),也就是PN结,又叫耗尽层。,P区,N区,空间电荷区,第3页,少子漂移,扩散与漂移达到动态平衡形成一定宽度的PN结,多子扩散,形成空间电荷区产生内电场,促使,阻止,第3页,扩散运动和漂移运动相互联系又相互矛盾,扩散使空间电荷区加宽,促使内电场增强,同时对多数载流子的继续扩散阻力增大,但使少数载流子漂移增强;漂移使空间电荷区变窄,电场减弱,
11、又促使多子的扩散容易进行。,当漂移运动达到和扩散运动相等时,PN结便处于动态平衡状态。可以想象,在平衡状态下,电子从N区到P区扩散电流必然等于从P区到N区的漂移电流,同样,空穴的扩散电流和漂移电流也必然相等。即总的多子扩散电流等于总的少子漂移电流,且二者方向相反。,在无外电场或其他因素激发时,PN结处于平衡状态,没有电流通过,空间电荷区的宽度一定。由于空间电荷区内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子复合掉了,即多数载流子被耗尽了,所以空间电荷区又称为耗尽层,其电阻率很高,为高阻区。扩散作用越强,耗尽层越宽。,PN结具有电容效应。结电容是由耗尽层引起的。耗尽层中有不能移动的正
12、、负离子,各具有一定的电量,当外加电压使耗尽层变宽时,电荷量增加,反之,外加电压使耗尽层变窄时,电荷量减小。这样耗尽层中的电荷量随外加电压变化而改变时,就形成了电容效应。,第3页,3.PN结的单向导电性,PN结具有单向导电的特性,也是由PN结构成的半导体器件的主要工作机理。,PN结外加正向电压(也叫正向偏置)时,如左下图所示:正向偏置时外加电场与内电场方向相反,内电场被削弱,多子的扩散运动大大超过少子的漂移运动,N区的电子不断扩散到P区,P区的空穴也不断扩散到N区,形成较大的正向电流,这时称PN结处于导通状态。,第3页,P端引出极接电源负极,N端引出极电源正极的接法称为反向偏置;反向偏置时内、
13、外电场方向相同,因此内电场增强,致使多子的扩散难以进行,即PN结对反向电压呈高阻特性;反偏时少子的漂移运动虽然被加强,但由于数量极小,反向电流 IR一般情况下可忽略不计,此时称PN结处于截止状态。,PN结的“正偏导通,反偏阻断”称为其单向导电性质,这正是PN结构成半导体器件的基础。,第3页,半导体的导电机理与金属导体的导电机理有本质的区别:金属导体中只有一种载流子自由电子参与导电,半导体中有两种载流子自由电子和空穴参与导电,而且这两种载流子的浓度可以通过在纯净半导体中加入少量的有用杂质加以控制。,杂质半导体中的多子和少子性质取决于杂质的外层价电子。若掺杂的是五价元素,则由于多电子形成N型半导体
14、:多子是电子,少子是空穴;如果掺入的是三价元素,就会由于少电子而构成P型半导体。P型半导体的共价键结构中空穴多于电子,且这些空穴很容易让附近的价电子跳过来填补,因此价电子填补空穴的空穴运动是主要形式,所以多子是空穴,少子是电子。,N型半导体中具有多数载流子电子,同时还有与电子数量相同的正离子及由本征激发的电子空穴对,因此整块半导体中正负电荷数量相等,呈电中性而不带电。,第3页,2.半导体在热(或光照等)作用下产生电子、空穴对,这种现象称为本征激发;电子、空穴对不断激发产生的同时,运动中的电子又会“跳进”另一个空穴,重新被共价键束缚起来,这种现象称为复合,即复合中电子空穴对被“吃掉”。在一定的温
15、度下,电子、空穴对的产生和复合都在不停地进行,最终处于一种平衡状态,平衡状态下半导体中载流子浓度一定。,1.半导体中的少子虽然浓度很低,但少子对温度非常敏感,即温度对半导体器件的性能影响很大。而多子因浓度基本上等于杂质原子的浓度,所以基本上不受温度影响。,4.PN结的单向导电性是指:PN结的正向电阻很小,因此正向偏置时电流极易通过;同时PN结的反向电阻很大,反向偏置时电流基本为零。,问题探讨,3.空间电荷区的电阻率很高,是指它的内电场总是阻碍多数载流子(电流)的扩散运动作用,由于这种阻碍作用,使得扩散电流难以通过,也就是说,空间电荷区对扩散电流呈现高阻。,第3页,6.2 半导体二极管,1.二极
16、管的结构和类型,一个PN结加上相应的电极引线并用管壳封装起来,就构成了半导体二极管,简称二极管,接在P型半导体一侧的引出线称为阳极;接在N型半导体一侧的引出线称为阴极。半导体二极管按其结构不同可分为点接触型和面接触型两类。点接触型二极管PN结面积很小,因而结电容小,适用于高频几百兆赫兹下工作,但不能通过很大的电流。主要应用于小电流的整流和高频时的检波、混频及脉冲数字电路中的开关元件等。面接触型二极管PN结面积大,因而能通过较大的电流,但其结电容也小,只适用于较低频率下的整流电路中。,参看二极管的实物图,第3页,2.二极管的伏安特性,二极管的电路图符号如右图所示:,(1)正向特性,二极管外加正向
17、电压较小时,外电场不足以克服内电场对多子扩散的阻力,PN结仍处于截止状态。,正向电压大于死区电压后,正向电流 随着正向电压增大迅速上升。通常死区电压硅管约为0.5V,锗管约为0.2V。,导通后二极管的正向压降变化不大,硅管约为0.60.8V,锗管约为0.20.3V。温度上升,死区电压和正向压降均相应降低。,第3页,当0VVth时,正向电流为零,Vth称死区电压或开启电压。,正向区分为两段:,当V Vth时,开始出现正向电流,并按指数规律增长。,2.二极管的伏安特性,二极管的电路图符号如右图所示:,反向电压大于击穿电压时,反向电流急剧增加。,(2)反向特性,外加反向电压时,PN结处于截止状态,反
18、向电流很小;,显然二极管的伏安特性不是直线,因此属于非线性电阻元件。,第3页,当VBRV0时,反向电流很小,且基本不随反向电压的变化而变化,此时的反向电流也称反向饱和电流IS。,当VVBR时,反向电流急剧增加,VBR称为反向击穿电压。,二极管模型,正向偏置时:管压降为0,电阻也为0。,反向偏置时:电流为0,电阻为。,当i D1mA时,vD=0.7V。,1.理想模型,2.恒压降模型,普通二极管被击穿后,由于反向电流很大,一般都会造成“热击穿”,热击穿不同于齐纳击穿和雪崩击穿,这两种击穿不会从根本上损坏二极管,而热击穿将使二极管永久性损坏。,热击穿问题,3.二极管的主要参数,1)最大整流电流IDM
19、:指管子长期运行时,允许通过的最大正向平均电流。2)最高反向工作电压URM:二极管运行时允许承受的最高反向电压。3)反向电流IR:指管子未击穿时的反向电流,其值越小,则管子的单向导电性越好。,4.二极管的应用举例,二极管应用范围很广,主要是利用它的单向导电性,常用于整流、检波、限幅、元件保护以及在数字电路中用作开关元件等。,第3页,1.限幅电路,Vi VR时,二极管导通,vo=vi。,Vi VR时,二极管截止,vo=VR。,例1:理想二极管电路中 vi=Vm sint V,求输出波形v0。,解:,2.开关电路,利用二极管的单向导电性可作为电子开关,0V 0V,导通 导通,导通 截止,截止 导通
20、,截止 截止,0V 5V,5V 0V,5V 5V,0V,0V,0V,5V,例2:求vI1和vI2不同值组合时的v0值(二极管为理想模型)。,解:,讨论,PN结击穿现象包括哪些?击穿是否意味着二极管的永久损坏?,反向电压增加到一定大小时,通过二极管的反向电流剧增,这种现象称为二极管的反向击穿。,反向击穿电压一般在几十伏以上(高反压管可达几千伏)。反向击穿现象分有雪崩击穿和齐纳击穿两种类型。,雪崩击穿:PN结反向电压增加时,空间电荷区内电场增强。通过空间电荷区的电子和空穴,在内电场作用下获得较大能量,它们运动时不断地与晶体中其它 原子发生碰撞,通过碰撞使其它共价键产生本征激发又出现电子空穴对,这种
21、现象称为碰撞电离。新产生的电子空穴对与原有的电子和空穴一样,在电场作用下,也向相反的方向运动,重新获得能量,再通过碰撞其它原子,又产生电子空穴对,从而形成载流子的倍增效应。当反向电压增大到某一数值,载流子的倍增情况就像在陡峻的山坡上积雪发生雪崩一样,突然使反向电流急剧增大,发生二极管的雪崩击穿。,齐纳击穿:在加有较高的反向电压下,PN结空间电荷区中存一个强电场,它能够破坏共价键将束缚电子分离出来造成电子空穴对,形成较大的反向电流。发生齐纳击穿需要的电场强度约为210V/cm,这只有在杂质浓度特别大的PN结中才能达到,因为杂质浓度大,空间电荷区内电荷密度也大,因而空间电荷区很窄,电场强度可能很高
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电子技术 课件

链接地址:https://www.31ppt.com/p-5073952.html