材料现代测试方法.ppt
《材料现代测试方法.ppt》由会员分享,可在线阅读,更多相关《材料现代测试方法.ppt(265页珍藏版)》请在三一办公上搜索。
1、聚合物材料测试方法,聚合物材料的合成、加工与应用,聚合物结构的表征了解聚合物的微观结构、亚微观结构和宏观结构。聚合物性能的测定评价和应用新材料、控制产品的质量、研究聚合物结构与性能的关系。聚合物分子运动的测定分子运动方式不同会导致聚合物所处的力学状态发生改变转变。每种聚合物都有其特定的转变。研究聚合物的松弛与转变可以帮助人们了解聚合物的结构,建立结构与性能之间的关系,聚合物结构的分析表征,链结构红外光谱、紫外光谱、荧光光谱、拉曼光谱、电子能谱、核磁共振、顺磁共振、X射线衍射(广角)、电子衍射、中子散射;聚集态结构X射线衍射(小角)、固体小角激光光散射、电子衍射、电子显微镜、光学显微镜、原子力显
2、微镜、热分析。,聚合物性能的测定,力学性能拉伸、弯曲、剪切、压缩试验、冲击试验、蠕变曲线、应力松弛曲线、高低频疲劳试验;流变性能旋转流变仪、毛细管流变仪、熔体流动速率测定仪;热性能导热系数测定仪、示差扫描量热仪、膨胀系数测定仪、热变形温度测定仪;电性能表面电阻和体积电阻、介电常数、介电损耗角正切、高压电击穿试验;,研究聚合物的分子运动,通过热力学性能的变化研究分子运动示差扫描量热仪;通过力学性质变化研究分子运动静态与动态热机械分析仪;通过电磁性质变化研究分子运动介电松弛与核磁共振;通过体积变化研究分子运动热膨胀计,本门课程教学内容,第一章聚合物材料力学性能测定第二章聚合物分子量与分子量分布测定
3、第三章聚合物流变性能测定第四章波谱分析在聚合物材料中的应用 第五章热分析在聚合物材料中的应用第六章显微分析技术在聚合物中的应用,课程说明,教材与参考书聚合物研究方法张美珍主编,轻工出版社高分子物理何曼君主编,复旦大学出版社教学方法 以课堂讲授为主,结合观摩仪器使用成绩评定 作业及平时表现30%;期末考试 70%。,第一章 聚合物力学性能测定,1-1描述力学性能的基本物理量 1-2 聚合物拉伸试验1-3 聚合物弯曲试验1-4 聚合物冲击试验,1-1 描述力学性能的基本物理量,一、应力与应变应变当材料受到外力作用而它所处的环境又使其不能产生惯性移动时,它的几何形状和尺寸就会发生变化,这种变化就称为
4、“应变”。应力当材料产生宏观变形时,材料内部分子间或者原子间原来的引力平衡受到了破坏,因而会产生一种附加的内力来抵抗外力、恢复平衡。当到达新的平衡时附加内力和外力大小相等,方向相反。单位面积上的附加内力称为“应力”。,1、简单拉伸 材料受到一对垂直于材料截面、大小相等、方向相反并在同一直线上的外力作用,拉伸应变:=L-Lo/Lo=L/Lo 也称为伸长率,无量纲。拉伸应力:=F/Ao Ao是材料的起始截面积;应力的单位是 N/m2,称为“帕斯卡”。,2.简单剪切 材料受到与截面平行、大小相等、方向相反,但不在一条直线上的两个外力作用,使材料发生偏斜。其偏斜角的正切值定义为剪切应变。,剪切应变:s
5、=S/d=tg 剪切角的正切剪切应力:s=F/A。剪切应力的单位也是N/m2(帕斯卡)。,3.均匀压缩 材料受到均匀围压力的作用,材料的压缩应力就是所受到的围压力P;受力后材料的体积发生变化,由原来的Vo减小为Vo-V,压缩应变为:=V/Vo,4、弯曲对材料施加一弯曲力矩,使材料发生弯曲。主要有两种形式:,5、扭转对材料施加扭转力矩,简单拉伸时:杨氏模量 E=/=(F/Ao)/(L/Lo)简单剪切时:剪切模量 G=s/s=(F/Ao)/tg均匀压缩时:体积模量 B=P/=PVo/V 由于应变是无量纲的物理量,所以模量的单位与应力的单位相同,都是N/m2(帕斯卡)。,二、弹性模量在弹性形变范围内
6、单位应变所需应力的大小。是材料刚性的一种表征,代表材料抵抗变形的能力。,三、材料强度材料抵抗外力破坏的能力拉伸强度材料抵抗拉伸破坏的能力,也称抗张强度。在规定的的温度、湿度和拉伸速度下,对标准尺寸的哑铃状试样施加拉伸载荷。当材料被拉断时,试样所承受的最大载荷P与试样的横截面积(宽度与厚度的乘积)之比即为材料的拉伸强度:t=P/bd 由于在拉伸过程中试样的宽度和厚度不断变化,所以一般采用试样起始的尺寸来计算拉伸强度。,2.弯曲强度材料抵抗弯曲破坏的能力 在规定的试验条件下对标准试样施加一个弯曲力矩,直到试样断裂:,测定试验过程中的最大载荷P,并按照下式计算弯曲强度:,3.冲击强度材料抵抗冲击载荷
7、破坏的能力,反映材料的韧性指标。通常定义为试样在冲击载荷作用下破坏时单位面积吸收的能量。,冲击强度的试验方法有许多种,包括摆锤式冲击试验、落球式冲击试验、高速拉伸试验等。设W为试样断裂所消耗的功,可以有两种表示材料抵抗冲击载荷破坏的强度:冲击韧性:,4、硬度表征材料表面抵抗外力变形的能力 由一种较硬的材料做为压头,在一定的试验条件下将压头压入试样中,以压痕的深度计算材料的硬度。塑料球压痕硬度 布氏硬度 洛氏硬度,四、应力应变曲线 对聚合物进行拉伸试验,以试样的应力值对试样的形变值作图所得到的曲线。通常以应力为纵坐标、应变为横坐标。,屈服点Y Y:屈服应力 Y:屈服伸长率断裂点B B:断裂应力
8、B:断裂伸长率,1-2 聚合物拉伸试验,拉伸试验测定的力学性能拉伸强度、断裂强度、屈服强度、定伸强度、断裂伸长率、应力应变曲线、弹性模量。拉伸试验所适用的聚合物材料热塑性塑料、热固性塑料、橡胶材料拉伸试验对试样的要求4类哑铃状试样,I型试样硬质塑料,II型试样软质塑料,III型试样热固性塑料(填充和纤维增强塑料),IV型试样热固性增强塑料板,拉伸试验中的术语,拉伸强度拉伸试样至断裂为止所承爱受的最大拉伸应力断裂强度拉伸试样断裂时所对应的拉伸应力屈服强度在拉伸应力-应变曲线上屈服点处的拉伸应力定伸强度应力-应变曲线偏离直线后达规定应变百分数时的拉伸应力断裂伸长率试样断裂时标线间距离增加量与初始标
9、距之比,以百分数表示拉伸弹性模量应力-应变曲线上直线部分的斜率,拉伸试验机,机械式拉伸试验机历史悠久,使用简单,价格低廉。但加载速度不稳,测量精度较差,不具有数据记录和处理功能。电子式拉伸试验机结构简单,用途单一,数据处理能力有限,控制测量精度也相对较低,但价格很低廉。电子万能材料试验机试验量程和拉伸速度可调,控制精度和控制范围很高很宽。可按需要增配不同吨位的传感器、夹具和附件实现一机多用,完成拉、压、弯、剪、剥离、撕裂、摩擦系数、扭转等功能。,试验步骤,准备试样做标距、测量尺寸;用夹具夹持试样选定试验量程和拉伸速度,进行试验记录试验数据计算试验结果,1-3 聚合物弯曲试验,弯曲试验测定的力学
10、性能弯曲强度、弯曲弹性模量弯曲试验所适用的聚合物材料热塑性塑料和热固性塑料弯曲试验对试样的要求矩形试样,板材试样厚度为110mm时,以原厚为试样厚度;厚度大于10mm时,应从一面加工成10mm。,试样形状和尺寸,试验机电子万能材料试验机,试验步骤,准备试样做标距、测量尺寸;根据试样种类选择量程;根据试样厚度选择跨度、速度和压头;安放试样于支座上;开动试验机,加载并记录试验数据在规定挠度之前断裂,记录断裂负荷或最大负荷在规定挠度时未断裂,记录达规定挠度时的负荷计算试验结果,1-4 聚合物冲击试验,冲击试验测定的力学性能冲击强度冲击试验所适用的聚合物材料热塑性塑料和热固性塑料冲击试验方法简支梁冲击
11、和悬臂梁冲击,简支梁冲击强度,试样的两端有支撑,摆锤冲击试样的中部,试样形状和尺寸,简支梁冲击试验步骤,准备试样测量尺寸;根据试样断裂能选择摆锤;检查试验机零点和支座;将试样水平放置于支座上,试样中心或缺口位置与锤刃对准,缺口背对锤刃;平稳释放摆锤,从表盘读取试样断裂能;计算试验结果,悬臂梁冲击强度,试样一端固定一端自由摆锤冲击试样自由端,45o,模塑试样推荐厚度为12.7mm,板材加工试样推荐厚度为612.7mm。,试样形状和尺寸,试验步骤,准备试样测量尺寸;根据试样断裂能选择摆锤;检查试验机零点和支座;将试样垂直夹持在支架上,缺口对向锤刃;平稳释放摆锤,从表盘读取试样断裂能;计算试验结果,
12、相关标准,GB1040-92 塑料拉伸试验GB1043-93 塑料简支梁冲击试验GB1843-96 塑料悬臂梁冲击试验GB9341-2000塑料弯曲试验ASTM D-256-05 塑料悬臂梁冲击试验,第二章 分子量和分子量分布的测定,2-1 数均分子量的测定2-2 重均分子量的测定2-3 粘均分子量的测定2-4 凝胶渗透色谱(GPC),一、端基分析法使用端基分析法测定聚合物分子量的条件:1)聚合物必须是已知化学结构的线型或支链型大分子;2)大分子链端带有可供定量分析的基团;3)每个分子链上所含的基团数量是一定的;,2-1 数均分子量的测定,精确称量出试样重量W;测出重量为W的试样中端基的摩尔数
13、nt;2)根据每个大分子链所带有的端基数X,得到试样的摩尔数 3)计算出聚合物的分子量,端基分析法测定聚合物分子量的程序:,端基分析法测定聚合物分子量的特点:1)端基分析法测定的是数均分子量;2)方法适用于一些缩聚产物(尼龙、聚酯)分子量的测定;3)当聚合物分子量较高时实验误差比较大,其测量分子量的上限为二万左右;,依据溶液的依数性;沸点升高值(Tb)与溶质的性质无关。但是与溶质的摩尔分数成正比,即与溶质的分子量成反比。,二、沸点升高法,对于理想溶液,若溶剂种类一定而且重量取1000克,可以简化为:C溶液浓度(g/kg);MB溶质分子量;Kb 沸点升高常数(/重量摩尔浓度);,实验方法:1)在
14、不同溶液浓度条件下测定沸点升高值Tb;2)以(Tb/C)对C作图,并将曲线外推至C0,得到外推值(Tb/C)c0;3)以外推值(Tb/C)c0计算聚合物分子量 MB=Kb/(Tb/C)c0;,对于高分子溶液:只有当溶液浓度非常稀时,高分子溶液才表现出与理想溶液相同的行为。因此必须采取外推至极稀浓度的方法进行处理。,沸点升高法测定聚合物分子量的特点:1)测定的分子量是数均分子量;2)测量方法受到分子量大小的限制,测定的上限是一万;3)对溶剂有一定要求沸点下聚合物不分解;4)测量时必须达到热力学平衡;,三、渗透压法,对于理想溶液:,=gh,C 溶液浓度g/ml;M 溶质分子量;,高分子溶液的/C与
15、溶液浓度C有关:一般情况下取前两项即可:以/C 对C作图,由直线斜率可求得A2,由直线截距可计算出分子量。渗透压测量聚合物的分子量是一种比较好的方法(方便、精确),该方法测量分子量的范围是 104106之间,得到的也是数均分子量。,渗透压测定的影响因素,渗透膜的选择聚合物分子不能通过;对溶剂的透过率足够大;不与溶剂发生反应、不会被溶解。溶剂在使用前必须经过脱气和过滤。阀件的密封性要好;池中溶液造成的静压力要尽可能小。,例外情况的处理对于一些聚合物/溶剂体系,使用/C 对C作图得不到直线。这可能是维利公式中第三项不为零造成的。/C=RT(1/M+A2C+A3C2)令:2=A2M 3=A3M 则:
16、/C=RT/M(1+2C+3C2)对良溶剂体系:3=22/4,将3=22/4代入上式/C=RT/M(1+2C+22 C2/4)=RT/M(1+2C/2)2两边开平方:(/C)1/2=(RT/M)1/2(1+2C/2)以(/C)1/2 对C作图可得到直线,由直线截距可以计算出分子量。,2-2 重均分子量测定光散射法,一、基本原理,光线通过不均匀介质时,会产生散射现象,散射光的强度为:,观察角;r观察点与散射点之间距离;o入射光波长;Io入射光强度;n溶剂折射率;dn/dc溶液折射率与浓度变化比值;No阿佛加德罗常数;M溶质分子量;A2第二维利系数。,定义Relay因子:,将式中的常数合并为K,上
17、式可变为:,对聚合物溶液的校正,散射函数P:,P的值与大分子的形状、大小及光的波长有关。对于分子形状为无规线团、分子大小为h2,光波长为的高分子溶液,1/P的值为:,以上二式是光散法测定聚合物分子量的基础。配制45个聚合物稀溶液,先测定每个溶液在不同散射角处的散射强度,以kc/R对sin2/2作图,外推至0,得到;然后以其对浓度C作图,外推至c0,其截距。,实验仪器小角激光光散射仪,使用LALLS测定溶液的Relay因子(R),其优点为在小角度时(27o)可以省去角度外推。,1注射器;2激光器;3倒向镜;4衰减器;5透镜;6试样池;7固定衰减器;8光电倍增管;,实验仪器浓度示差折光指数仪,1光
18、源;2透镜;3光栅;4准直镜;5溶液;6溶剂;7成像镜;8读数显微镜;,使用浓度示差折光指数仪测定溶液的dn/dc值。,使用光散射法测定分子量的实验步骤,配制45个不同浓度的聚合物稀溶液;使用LALLS测定纯溶剂和每个溶液的R值;使用折光指数仪测定不同浓度溶液的n,以n/c对c作图,外推至c0,得到dn/dc值;由dn/dc值计算出k值;以kc/R对c作图,得一直线,截距为,斜率为2A2;,2-3 粘均分子量的测定,一、稀溶液粘度的表示方法 o纯溶剂的粘度;溶液的粘度;相对粘度 增比粘度 3 比浓粘度 4 比浓对数粘度 5 特性粘度,二、影响溶液粘度的因素,当kC 1时:略去高次项并代入前式可
19、得到:Huggins 方程,K 与溶液浓度无关的常数,1、溶液浓度,当sp 1时,将lnr按Taylor级数展开:将Huggins方程代入上式并略去高次项,可以得到:,令=1/2 k,上式可改写为:,Kraemer方程,分别以sp/C和lnr/C对浓度C作图可得右图。,当溶液浓度趋于零时:,Kraemer方程,Huggins方程,1)良溶剂线团扩张伸展,末端距增大,导致流动时对溶剂分子的扰乱增大,液体力学体积增大,值较高。2)不良溶剂线团扩张程度下降,呈紧密卷曲状态,末端距减小。流动时对溶剂分子的扰乱减小,流体力学体积减小,值变低。3)溶剂溶剂对大分子的构象以及液体力学体积没有影响,处于状态。
20、,2.溶剂种类,3.温度对溶液粘度的影响 在良溶剂中,高分子线团已经处于伸展松散状态,温度对的影响程度较小。一般随温度升高,值有所减小。在不良溶剂中,温度的升高将减少链段之间的内聚力,增加溶剂与链段之间的作用,导致高分子线团变的松散、伸展,因此随温度的上升而明显增大。,溶质分子量增大,粘度增大。当溶剂、聚合物种类、温度固定后,溶液的特性粘数仅由溶质的分子量决定:,K,是常数,其值取决于聚合物种类、溶剂种类、温度以及分子量范围。一般在0.51之间,线型柔性链高分子溶解在良溶剂中,其接近于0.8;随溶剂溶解能力减弱,逐渐减小;在溶剂中,为0.5。,4.溶质分子量对溶液粘度的影响,MarkHouwi
21、nk 方程,三、液体在毛细管中的流动,牛顿流动定律:毛细管内不同流层的流速为:,流动的推动力:剪切面积:剪切应力:剪切速率:,液体在毛细管中的流量等于流速与面积的乘积:,由于毛细管两端的压差P=gh,上式可改写为:,动能校正:,则有:溶液流速很慢时不必进行动能校正此时:,m常数,选择适当的毛细管使溶剂的流出大于100s,即可忽略动能修正项;使用稀溶液,使溶液密度与溶质密度相差很小(o);3.用毛细管粘度计先测定出纯溶剂的流出时间to,然后再测出不同浓度C的聚合物溶液的流出时间 t,由此可以得到不同浓度C下的r 和sp;,四、粘度法测定聚合物分子量,乌氏粘度计,分别以sp/C 和lnr/C为纵坐
22、标,溶液浓度C为横坐标作图,得到两条直线,将直线外推至C=0,得到的共同截距就是特性粘数。,如果已知 K、,就可以从Mark Houwink 公式计算出聚合物的粘均分子量:,该方法称为“稀释法”,“一点法”测定粘均分子量在一个浓度下测定sp或者r,然后直接求出特性粘度,对于线型的柔性链高分子:+K=1/2 K=1/3,Huggins方程,Kraemer方程,联立二式可得:,对于刚性链高分子,+K偏离 1/2较大,上式不适用;假设K/=,则有:,先通过“稀释法”确定聚合物/溶剂体系的值,然后即可通过上式用“一点法”计算特性粘度和粘均分子量。,分子量分布测定是将聚合物按照其分子量的大小分离成若干个
23、级分分级,然后测定出各个级分的分子量和相对含量。1)利用聚合物溶解度对分子量的依赖性进行分级 沉淀分级、溶解分级、降温分级2)利用高分子在溶液中的运动性质进行分级 超速离心分级3)利用高分子在溶液中流体力学体积进行分级 凝胶渗透色谱分级,2-4 凝胶渗透色谱,凝胶渗透色谱 Gel Permeation Chromatography GPC分级将高分子溶液通过由多孔载体组成的分离柱,在柱子内部分子体积不同的大分子所处的位置不同,停留时间不同,从而得到分离。GPC的特点在对聚合物样品进行分级的同时还可以有效地检测出各级分的分子量和相对含量,快速简便。GPC的发展诞生于上世纪六十年代,已经得到了迅速
24、的发展和应用,目前已成为测定聚合物分子量大小和分布的最重要方法之一。,一、GPC分离原理体积排除理论,根据溶质分子尺寸(分子量、有效体积、流体力学体积)的差别进行分离。,凝胶色谱柱内部装填有凝胶载体的分离柱;凝胶经过特殊处理的多孔性载体,其表面和内部具有大小、形状不同的孔穴;空隙凝胶颗粒堆砌所形成的空间;,凝胶渗透色谱的分离过程是在装有多孔凝胶物质的 凝胶色谱柱中进行的。,聚合物溶液进入色谱柱后,由于浓度差,所有溶质分子都力图向凝胶表面孔穴渗透。体积较小的分子既能进入较大的孔穴,也可以进入较小的孔穴,向孔内扩散的较深;体积较大的分子只能进入较大的孔穴;体积更大的分子不能进入孔穴,只能从凝胶的空
25、隙流过。,聚合物试样进入色谱柱后处于溶剂的淋洗之下:,1)高分子量级分在柱内停留时间很短,很快就被溶剂淋洗出来;2)分子量中等级分在柱内的停留时间较长,它们随淋洗液缓慢的带出;3)分子量最小的级分在柱内的停留时间最长,最后被溶剂淋洗出;,按照淋出的先后顺序,依次收集到分子量从大到小的各个级分,从而达到对聚合物分级的目的。,凝胶色谱柱的分配系数,V0 空隙体积;Vi 孔穴体积;Vg 载体的骨架体积;色谱柱总体积:Vt=V0+Vi+Vg柱子内部的空间体积:V0+Vi 柱内溶剂的总体积为:V0+Vi,其中V0 中的溶剂为流动相,Vi中的溶剂为固定相,注入聚合物试样并用溶剂淋洗后:1)低分子量级分淋出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料 现代 测试 方法
链接地址:https://www.31ppt.com/p-5061603.html