晶体场、分子轨道理论.ppt
《晶体场、分子轨道理论.ppt》由会员分享,可在线阅读,更多相关《晶体场、分子轨道理论.ppt(88页珍藏版)》请在三一办公上搜索。
1、晶体场理论是一种静电理论,它把配合物中中心原子与配体之间的相互作用,看作类似于离子晶体中正负离子间的相互作用。但配体的加入,使得中心原子原来五重简并的 d 轨道(见图)失去了简并性。在一定对称性的配体静电场作用下,五重简并的 d 轨道分裂为两组或更多的能级组。这种分裂将对配合物的性质产生重要影响。,4.1 晶体场理论,在1929年由Bethe提出,20世纪的30年代中期为van Vleck等所发展,与Puling的价键理论处于同一时代,但当时并未引起重视,到50年代以后又重新兴起并得到进一步发展,广泛用于处理配合物的化学键问题。,d 轨道示意图,一 晶体场中d轨道能级的分裂,1 正八面体场,八
2、面体场中的d轨道,d1构型正离子它处于一个球壳的中心,球壳表面上均匀分布着6个单位的负电荷,由于负电荷的分布是球形对称的,因而不管这个电子处在哪条d轨道上,它所受到的负电荷的排斥作用都是相同的,即d轨道能量虽然升高,但仍保持五重简并。,若改变负电荷在球壳上的分布,把它们集中在球的内接正八面体的六个顶点上,且这六个顶点均在x、y、z轴上,每个顶点的电量为1个单位的负电荷,由于球壳上的总电量仍为6个单位的负电荷,因而不会改变对d电子的总排斥力,即不会改变d轨道的总能量,但是那个单电子处在不同的d轨道上时所受到的排斥作用不再完全相同。,从d轨道的示意图和d轨道在八面体场中的指向可以发现,其中dz2和
3、dx2y2轨道的极大值正好指向八面体的顶点处于迎头相撞的状态,因而单电子在这类轨道上所受到的排斥较球形场大,轨道能量有所升高,这组轨道称为eg轨道。相反,dxy、dxz、dyz轨道的极大值指向八面体顶点的间隙,单电子所受到的排斥较小,与球形对称场相比,这三条轨道的能量有所降低,这组轨道称为t2g轨道。,d轨道能级在Oh场中的分裂,八面体场中的d轨道,将eg和t2g这两组轨道间的能量差用o或10Dq来表示(o或 10 Dq称为分裂能),根据重心守恒原理,则,由于电子的总能量,亦即各轨道总能量保持不变,eg能量的升高总值必然等于t2g轨道能量下降的总值,这就是所谓的重心守恒原理(原来简并的轨道在外
4、电场作用下如果发生分裂,则分裂后所有轨道的能量改变值的代数和为零)。,d轨道能级在Oh场中的分裂,2 正四面体场,在正四面体场中,过渡金属离子的五条d轨道同样分裂为两组,一组包括dxy、dxz、dyz三条轨道,用t2表示,这三条轨道的极大值分别指向立方体棱边的中点。距配体较近,受到的排斥作用较强,能级升高,另一组包括dz2和dx2y2,以e表示,这两条轨道的极大值分别指向立方体的面心,距配体较远,受到的排斥作用较弱,能级下降。,解得:E(t2)1.78Dq E(e)2.67Dq,tE(t2)E(e)(4/9)o3E(t2)2 E(e)0,由于在四面体场中,这两组轨道都在一定程度下避开了配体、没
5、有像八面体中d轨道与配体迎头相撞的情况,可以预料分裂能t将小于o,计算表明 t(4/9)o 同样,根据重心守恒原理可以求出t2及e轨道的相对能量:,3 拉长的八面体,在拉长八面体中,z轴方向上的两个配体逐渐远离中心原子,排斥力下降,即dz2能量下降。同时,为了保持总静电能量不变,在x轴和y轴的方向上配体向中心原子靠拢,从而dx2y2的能量升高,这样eg轨道发生分裂。在t2g三条轨道中,由于xy平面上的dxy轨道离配体要近,能量升高,xz和yz平面上的轨道dxz和dyz离配体远因而能量下降。结果,轨道也发生分裂。这样,5条d轨道分成四组,能量从高到低的次序为:dx2y2,dz2,dxy,dxz和
6、dyz。,4 平面正方形场,四个配体只在x、y平面上沿x和y轴方向趋近于中心原子,因dx2y2轨道的极大值正好处于与配体迎头相撞的位置,受排斥作用最强,能级升高最多。其次是在xy平面上的dxy轨道。而dz2仅轨道的环形部分在xy平面上,受配体排斥作用稍小,能量稍低,简并的dxz、dyz的极大值与xy平面成45角,受配体排斥作用最弱,能量最低。,总之,5条d轨道在Sq场中分裂为四组,由高到低的顺序是:dx2y2,dxy,dz2,dxz和dyz。,d 轨道能级在不同配位场中的分裂,表4,二 分裂能和光谱化学序列,分裂能:中心离子的d轨道的简并能级因配位场的影响而分裂成不同组能级之间的能量差。,分裂
7、能的大小与下列因素有关:,1 配位场亦即几何构型类型 如t(4/9)o,(2)金属离子d轨道的主量子数 在同一副族不同过渡系的金属的对应配合物中,分裂能值随着d轨道主量子数的增加而增大。当由第一过渡系到第二过渡系再到第三过渡系、分裂能依次递增4050%和2025%。这是由于4d轨道在空间的伸展较3d轨道远,5d轨道在空间的伸展又比4d轨道远,因而易受到配体场的强烈作用之故。,(1)金属离子的电荷 中心金属离子电荷增加,值增加。这是由于随着金属离子的电荷的增加,金属离子的半径减小,因而配体更靠近金属离子,从而对 d 轨道产生的影响增大之故,三价离子的分裂能 比二价离子要大4060%。,2 金属离
8、子,将一些常见配体按光谱实验测得的分裂能从小到大次序排列起来,便得光谱化学序:这个化学序代表了配位场的强度顺序。由此顺序可见,对同一金属离子,造成值最大的是CN离子,最小的是I离子,通常把CN、NO2等离子称作强场配位体,I、Br、F离子称为弱场配位体。,3 配体的本性,须指出的是,上述配体场强度顺序是纯静电理论所不能解释的。例如OH比H2O分子场强度弱,按静电的观点OH带了一个负电荷,H2O不带电荷,因而OH应该对中心金属离子的d轨道中的电子产生较大的影响作用,但实际上是OH的场强度反而低,显然这就很难纯粹用静电效应进行解释。这说明了 d 轨道的分裂并非纯粹的静电效应,其中的共价因素也不可忽
9、略。,综上,在确定的配位场中,值取决于中心原子和配位体两个方面。1969年Jorgensen将分裂能拆分为只决定于配体的f因子(f叫配体的特性参数),和只决定于金属的g因子(g叫金属离子的特性参数),并表示为 of g,表5列出了某些配体的f值和某些金属离子的g值,如果缺乏实验数据时,可由此粗略地估计o。,表5,三 电子成对能和配合物高低自旋的预言,所谓成对能是电子在配对时为了克服静电场的排斥作用所需的能量,通俗地讲就是使自旋成对的两个电子占据同一轨道所必须付出的能量,以P表示。,电子成对能的大小可用描述电子相互作用的Racah 电子排斥参数B和C来表示。通常,C4B。,对气态的自由金属离子,
10、已知 P(d4)6B5C P(d5)7.5B5C P(d6)2.5B4C P(d7)4B4C即 P(d5)P(d4)P(d7)P(d6)说明电子成对能与d电子数目有关。,配离子中的中心金属离子由于受配位体的影响,同自由金属离子相比,电子云扩展了(电子云扩展是指其运动的范围增大),电子间的相互作用力减小。所以,配离子中的中心金属离子的成对能比气态自由金属离子的成对能减小(减小约1520%)。,对于一个处于某特定配位场中的金属离子,其电子排布究竟采用高自旋,还是低自旋的状态,可以根据成对能和分裂能的相对大小来进行判断:,当P时,因电子成对需要的能量高,电子将尽量以单电子排布分占不同的轨道,取高自旋
11、状态;,当P时,电子成对耗能较少,此时将取低自旋状态。,由于P(d5)P(d4)P(d7)P(d6),故在八面体场中d6离子常为低自旋的但Fe(H2O)62和CoF63例外,而d5离子常为高自旋的(CN的配合物例外)。,根据P和的相对大小可以对配合物的高、低自旋进行预言:,在弱场时,由于值较小,配合物将取高自旋构型,相反,在强场时,由于值较大,配合物将取低自旋构型。,对于四面体配合物,由于t(4/9)0,这样小的t值,通常都不能超过成对能值,所以四面体配合物通常都是高自旋的。,第二、三过渡系金属因值较大,故几乎都是低自旋的。,高自旋排布,低自旋排布,在配体静电场的作用下,中心金属离子的d轨道能
12、级发生分裂,其上的电子一部分进入分裂后的低能级轨道,一部分进入高能级轨道。进入低能级轨道使体系能量下降,进入高能级轨道使体系能量上升。根据能量最低原理,体系中的电子优先进入低能级轨道。此时,如果下降的能量多于上升的能量,则体系的总能量下降。这样获得的能量称为晶体场稳定化能。这种因d轨道分裂和电子填入低能级轨道给配合物带来的额外稳定化作用将产生一种附加的成键作用效应。,四 晶体场稳定化能和配合物的热力学性质,1 晶体场稳定化能(CFSE),晶体场稳定化能的大小与下列因素有关:配合物的几何构型;中心原子的d电子的数目;配体场的强弱;电子成对能。,如,Fe3(d5)在八面体场中可能有两种电子排布 t
13、2g3eg2,相对于未分裂的d轨道的能量值为 CFSE3(4Dq)26Dq0 t2g5eg0,CFSE5(4Dq)2P20Dq2P,表6,表6列出几种配位场下的晶体场稳定化能值,为了简化,忽略了成对能。,在弱场中,相差5个 d 电子的各对组态的稳定化能相等,如d1与d6、d3与d8,这是因为,在弱场中无论何种几何构型的场,多出的5个电子,根据重心守恒原理,对稳定化能都没有贡献。,从表6可以发现以下几点规律:,在弱场中,d0、d5、d10构型的离子的CFSE均为0。,除d0、d5、d10外,无论是弱场还是强场,CFSE的次序都是正方形八面体四面体。,在弱场中,正方形与八面体稳定化能的差值以d4、
14、d9为最大,而在强场中则以d8为最大。,2 CFSE对配合物性质的影响,晶体场理论的核心是配位体的静电场与中心离子的作用所引起的d轨道的分裂和d电子进入低能级轨道带来的稳定化能使体系能量下降,从而产生一种附加成键作用效应。,既然CFSE引起附加成键效应,那么这种附加成键效应及其大小必然会在配合物的热力学性质上表现出来。,由表6.7和右图可以发现,在正八面体弱场高自旋(HS)中,CFSE的曲线呈现“W”形或“反双峰”形状,三个极大值位于d0、d5、d10处,两个极小值出现在d3和d8处,而在强场低自旋(LS)中,曲线呈“V”形,极大值为d0、d10,极小值d6。,例如,以过渡金属离子的水合焓为例
15、:,显然水合焓跟中心离子的d轨道处于配体H2O静电场有关。假定这种静电场由球形对称的静电场和正八面体对称的静电场两部分所组成。基于此,可以写出玻恩哈伯循环:,Mm(g)H2OM(H2O)6m(ag)hydHmMm,(t2gNegnN),其中:hydHmM(H2O)6m(dn,球形)是生成球形对称的M(H2O)6m(dn,球形)的水合能;CFSE是正八面体静电场使d轨道分裂、d 电子重新排布时放出的能量。,对于过渡金属离子,随原子序数的增加,有效核电荷增大,离子半径减小,键能和球形对称静电场水合能应该平稳地增加(负值增大),而CFSE部分应该有W形的变化规律,这两部分合起来就得到左图的形状。水合
16、焓的变化规律正是CFSF随d电子数的变化规律的体现。,需注意的是:CFSE只占金属与配体总键能的一小部分(大约为510%),只有当别的因素大致不变时,它的关键作用才能表现出来。,类似地,可以讨论晶体场分裂在晶格能、离解能上的影响。,这个序列叫作IrvingWilliams序列,这个顺序大致与弱场CFSE的变化顺序一致,类似于前述反双峰曲线的后半段,只是谷值不在d8而是d9,其原因是姜泰勒效应所引起的。,3 配合物生成常数的IrvingWilliams序列,实验发现,在由Mn到Zn的二价金属离子与含 N 配位原子的配体生成的配合物的稳定次序,亦即它们的平衡常数,可观察到下列顺序:Mn2Fe2Co
17、2Ni2Cu2Zn2 d5 d6 d7 d8 d9 d10,五 d轨道分裂的结构效应,1 过渡金属的离子半径,从下图八面体配合物中第一过渡系离子的半径随原子序数的变化看来,过渡金属并不像镧系元素一样,其离子半径并不随原子序数的增加单调的减少。而是呈斜W形(在弱场中)或V形(在强场中)的变化规律。,以二价离子弱场而言,按晶体场理论,Ca2、Mn2、Zn2离子有球形对称的电子云分布。三个离子的有效核电荷依次增大,故离子半径逐渐减小,它们位于逐渐下降的平滑曲线上。其它离子的半径则位于这条平滑曲线,的下面,这是由于它们的d电子并非球形分布所致。以d3的V2为例。其电子组态为t2g3eg0,由于t2g电
18、子主要集中在远离金属配体键轴的区域,它提供了比球形分布的d电子小得多的屏蔽作用,故而半径进一步减小。而d4的Cr2,它的电子组态为t2g3eg1。由于新增加的eg电子填入位于金属配体键轴区域,它的屏蔽作用增加,核对配体的作用相应减小,故离子的半径有所增大。,2 JahnTeller(姜泰勒)效应,电子在简并轨道中的不对称占据会导致分子的几何构型发生畸变,从而降低分子的对称性和轨道的简并度,使体系的能量进一步下降,这种效应称为姜泰勒效应。,以d9,Cu2的配合物为例,当该离子的配合物是正八面体构型时,d轨道就要分裂成t2g和eg二组轨道,设其基态的电子构型为t2g6eg3,那么三个eg电子就有两
19、种排列方式:,t2g6(dz2)2(dx2y2)1 由于dx2y2轨道上电子比dz2轨道上的电子少一个,则在xy平面上d电子对中心离子核电荷的屏蔽作用就比在 z轴上的屏蔽作用小,中心离子对xy平面上的四个配体的吸引就大于对z轴上的两个配体的吸引,从而使xy平面上的四个键缩短,z轴方向上的两个键伸长,成为拉长的八面体。,t2g6(dz2)1(dx2y2)2 由于dz2轨道上缺少一个电子,在z轴上d电子对中心离子的核电荷的屏蔽效应比在xy平面的小,中心离子对z轴方向上的两个配体的吸引就大于对xy平面上的四个配体的吸引,从而使z轴方向上两个键缩短,xy面上的四条键伸长,成为压扁的八面体。,姜泰勒效应
20、不能指出究竟应该发生哪种几何畸变,但实验证明,Cu的六配位配合物,几乎都是拉长的八面体,这是因为,在无其它能量因素影响时,形成两条长键四条短键比形成两条短键四条长键的总键能要大之故。,无论采用哪一种几何畸变,都会引起能级的进一步分裂,消除简并,其中一个能级降低,从而获得额外的稳定化能(左图为第一种情况的能级图)。,dn组态八面体配合物的JahnTeller效应和实例,3 配合物立体构型的选择,假定配合反应为 M mL MLm G H S,根据GHTSRTlnK,配合物的稳定性将由G决定,由于各种配合物的S相差不大,所以主要决定于H,显然,H值越负,则MLm愈稳定。,设 m6、4时,上述配合反应
21、的H值为 H正八面体6bH(ML)CFSE正八面体 H正四面体4bH(ML)CFSE正四面体 H正方形 4bH(ML)CFSE正方形,(1)如果各种构型的CFSE相差不大,则因八面体配合物的总键能大于正四面体和正方形配合物的总键能,因而正八面体的H最大,所以,在此时,以正八面体为最稳定。(2)如果各种构型的键焓相差不大,那么 由于CFSE正方形CFSE正八面体CFSE正四面体,此时,H正方形最大,以正方形构型为最稳定。各种构型的CFSE均相等,则此时三种构型都能稳定存在。显然,只有在d0、d10和弱场d5才有这种可能。因此对Td,只有在d0、d5、d10(和大体积配体时)才会生成。,4.2 配
22、位场理论,晶体场理论较好地说明了配合物的立体化学、热力学性质等主要问题,这是它的成功之处,但是它不能合理解释配体的光化学顺序。按照静电理论的观点也不能解释一些金属同电中性的有机配体的配合物的生成的事实,这是由于晶体场理论没有考虑金属离子与配体轨道之间的重叠,即不承认共价键的存在的缘故。近代实验测定表明,金属离子的轨道和配体的轨道确有重叠发生。,为了对上述实验事实给以更为合理的解释,人们在晶体场理论的基础上,吸收了分子轨道理论的若干成果,既适当考虑中心原子与配体化学键的共价性,又仍然采用晶体场理论的计算方法,发展成为一种改进的晶体场理论,特称为配体场理论。,配位场理论认为:(1)配体不是无结构的
23、点电荷,而是有一定的电荷分布;(2)成键作用既包括静电的,也包括共价的作用。,自由金属离子的Racah拉卡参数B值可以通过发射光谱测定,而该金属作为配合物的中心离子的Racah拉卡参数B可以通过吸收光谱测定。常见离子的B和B值列于下页表中。,共价作用的主要结果就是轨道的重叠,换句话说就是d 轨道的离域作用,d电子运动范围增大,d电子间的排斥作用减小。这谓之为电子云扩展效应。,前面提到的配合物中心离子的价电子间的成对能(亦即价电子间的排斥作用)比自由离子小约1520%,这种减小就是缘由电子云扩展效应(电子云扩展效应大,亦即运动范围增大,静电排斥作用就减小,所以成对能减小)。且成对能可以用Raca
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 晶体 分子 轨道 理论
链接地址:https://www.31ppt.com/p-5060180.html