晶体学基础知识导论(x衍射).ppt
《晶体学基础知识导论(x衍射).ppt》由会员分享,可在线阅读,更多相关《晶体学基础知识导论(x衍射).ppt(220页珍藏版)》请在三一办公上搜索。
1、材料:你们最关心的是什么?性能:你认为与哪些因素有关?结构:有哪些检测分析技术?,绪论,物质的性质、材料的性能决定于它们的组成和微观结构。如果你有一双X射线的眼睛,就能把物质的微观结构看个清清楚楚明明白白!X射线衍射将会有助于你探究为何成份相同的材料,其性能有时会差异极大.X射线衍射将会有助于你找到获得预想性能的途径。,X-射线衍射测定晶体结构,提纲,点阵、晶胞对称操作、对称性、对称元素特征方向、特征对称性、Bravais格点点群螺旋轴、滑移面、空间群国际晶体学表:等效点、普通点、特殊点倒易点阵、倒易晶胞及与实空间晶胞的关系X-射线衍射原理,Brag方程,Ewald球,衍射角与衍射指标间的关系
2、,晶体学是研究晶体的自然科学。主要研究包括5个部分:晶体生长、晶体的几何结构、晶体结构分析、晶体化学及晶体物理。,1.1 晶体学,晶体生长是研究人工培育晶体的方法和规律,晶体的几何结构是研究晶体外形的几何理论及内部质点的排列规律,晶体结构分析是收集大量与晶体结构有关的衍射数据,晶体化学主要研究化学成分与晶体结构及性质之间的关系,晶体物理是研究晶体物理性质,如光学性质、电学性质、磁学性质、力学性质、声光性质和热学性质等,1.1.1 经典晶体学,1669年丹麦学者斯蒂诺,发现了晶面角守恒定律。,1801年法国结晶学家赫羽依,发表了有理指数定律。,1809年乌拉斯顿设计了第一台反射测角仪。,1805
3、1809年间德国学者外斯总结出晶体对称定律。随后又提出了晶带定律。,18181839年间外斯和英国学者密勒先后创立了用以表示晶面空间方位的晶面符号。,18851890俄国晶体学家费道罗夫首先推导出描述晶体结构对称性的230种空间群。随后,德国数学家熊夫利斯和英国的巴罗相继以不同的途径推导出所有的空间群。,到19世纪末,晶体结构的点阵理论已基本成熟。,经典晶体学还包括了晶体的发生与成长的启蒙工作。,经典晶体学还包括了对天然矿物物理性质的研究。,1830年德国学者赫塞尔推导出描述晶体外形的32种点群。,1.2.2 近代晶体学,1912年德国科学家劳埃成功发现了X射线对晶体的衍射现象,具体地证实了晶
4、体结构点阵理论的正确性。,1913年英国晶体学家布拉格父子和俄国晶体学家吴里弗分别独立地推导出X射线衍射基本公式。,20世纪20年代,完成了收集X射线衍射图谱和推引空间群方法等工作。,40年代着重应用了X射线衍射强度数据,将数学上的Patterson函数和Fourier级数应用到结构分析上来,在这个时期中,各类有代表性的无机物和不太复杂的有机物的晶体结构,大多数已得到了测定,并总结出原子间的键长、键角和分子构型等重要科学资料。,60年代,人们已成功地测定了蛋白质大分子的晶体结构,它标志着X射线晶体结构分析工作已达到了相当高的水平。,近20多年来,采用了电子学和计算数学的新技术与新成就,使晶体结
5、构分析测定的精度、速度和广度得到了更进一步的提高。,近代晶体学是一门边缘科学,它与固体物理学、化学、矿物学、冶金学和近代分子生物学等科学的关系极为密切。,在古代,无论中外,都把具有几何多面体形态的水晶称为晶体。后来,这一名词推广了,凡是天然具有(非人工琢磨而成)几何多面体形态的固体,所示的石盐等,都称为晶体。,1.2 晶体,方解石,石盐,显然,这种认识还并不全面。例如,同样是一种物质石英,它既可以呈多面体形态的水晶而存在,也可以呈外形不规则的颗粒而生成于岩石之中。这两种形态的石英,从本质上来说是一样的。由此可见,自发形成几何多面体形态,只是晶体在一定条件下的一种外在表现。晶体的本质必须从它的内
6、部去寻找。,Quartz,Rock-crystal,晶体是原子、分子或离子规则排布的固体;晶体是微观结构具有周期性和一定对称性的固体;晶体是可以抽象出点阵结构的固体。,微观结构可抽象为单一点阵描写的晶体称为单晶,单晶无规则排布组成的晶体称为多晶,1自范性 自范性是指晶体在适当条件下可以自发地形成几何多面体的性质。2确定的熔点3各向异性和对称性 晶体的性质随方向的不同而有所差异,这就是晶体的异向性(许多晶体的解理等)。在晶体的外形上,也常有相等的晶面、晶棱和角顶重复出现。这种相同的性质在不同的方向或位置上作有规律地重复,就是对称性。晶体的格子构造本身就是质点重复规律的体现。4对 X 射线的衍射效
7、应5最小内能和稳定性 在相同的热力学条件下晶体与同种物质的非晶质体、液体、气体相比较,其内能最小。晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。,1.3.1 晶体的基本特性,与晶体情况相反,有些状似固体的物质如玻璃、琥珀、松香等,它们的内部质点不作规则排列,不具格子构造,称为非晶质或非晶质体。从内部结构的角度来看,非晶质体中质点的分布颇类似于液体。,石英晶体结构示意图,石英玻璃结构示意图,1.3.2 非晶质体,1.3.3 准晶体,1985年在电子显微镜研究中,发现了一种新的物态,其内部结构的具体形式虽然仍在探索之中,但从其对称性可知,其质点的排列应是长程有序,但不体现周期重复,即不存在
8、格子构造,人们把它称为准晶体。,二 晶 体点 阵,晶体结构最突出的特点是其结构基元(原子、离子、分子或络合离子)在晶体所占有的空间中作周期性的排列,构成了晶体点阵结构图案。点阵总是由为数无限和周围相同点组成。,Cs+,Cl-,CsCl的晶胞图,CsCl晶体结构示意图,CsCl的晶体结构示意图,CsCl的晶胞图,Cs+,Cl,Cs+,Cl,Na+,Cl-,NaCl晶体结构示意图,氯化钠晶体中Na+、Cl-的离子个数比为1 1,NaCl的晶体结构示意图,NaCl的晶胞图,Na+,Cl,我们在研究晶体结构中各类物质点排列的规律性时,为了得出一个能概括各类等同点排列的一般规律,也就是说为了更好地、形象
9、而简单地描述晶体内部物质点排列的周期性,把晶体中按周期重复的那一部分物质点抽象成一些几何点,而不考虑重复周期中她所包含的具体内容(指原子、离子或分子),从而集中反映周期重复的方式。这种几何点,称为结点(点阵点)。由结点排列成的三维点阵就概括地表明各种等同点在晶体结构空间中的排列规律。称之为晶体结构的空间点阵。,2.1 点阵与结构基元,1 一维图案与直线点阵,聚乙烯,Tm=ma(m=0,1,),经过平移基矢 ma 的平移操作,点阵点可以完全不可分辨,因此点阵具有平移对称性,点阵点所代表的具体物质结构内容称为结构基元(structural motil),晶体中规则排列的微粒抽象为几何学中的点称为点
10、阵点或结点,点阵直线,2 二维图案与平面点阵,石墨,平面点阵可分解为一系列平行的点阵直线,在每一组平行的点阵直线中,其间距(di)相等。,平面点阵也可划分为无限个相互连接的平行四边形(网格),而任何阵点周围的几何环境均完全相同。,阵点矢量(格点矢量),Rl=l1a1+l2a2,初基矢量,阵点指数,l1 l2,初基晶胞,在点阵中 a,b 决定的平行四边形称为晶胞。基矢 a,b 以及夹角 g 称为晶胞参数。只含有一个点阵点的晶胞称为初基胞。含有一个以上点阵点的晶胞称为非初基胞或惯用胞。相应的基矢称为非初基或晶体学惯用基(简称惯用基)。,Tm,n=ma+nb(m,n=0,1,),平移 矢量,五种不同
11、排列的平面点阵,a,a,a,a,a,b,b,b,b,b,g,从下面一组二维周期性重复的平面图案中抽象出点阵来,并指出结构基元。同时请指出属于五种平面格子的哪一种?,3 晶体结构与空间点阵,在空间点阵中,可以划分出无限多个阵点直线族,在每一个阵点直线族中的阵点直线均为互相平行,而且重复周期相同。阵点直线在晶体结构中为晶列,在晶体外形上可表现为晶棱。,空间点阵可以划分成无限多个阵点平面族,阵点平面族中的阵点平面互相平行。阵点平面族有两个重要特征:1、空间方向,阵点平面的法线方向代表该阵点平面族的方向;2、阵点平面族中相邻平面间距相等。阵点平面在晶体结构中称为网面,表现在晶体外形上称为晶面。,晶体结
12、构=点阵*结构基元,点阵点或结点总和称为点阵(lattice),具有平移对称性。,晶胞(unit cell)是晶体中能代表晶格一切特征的最小部分,必为平行六面体。用a,b,c和a,b,g 表示晶胞特征,称为晶胞参数。,沿着一定方向按某种规则把结点联结起来,则可以得到描述各种晶体结构的几何图象-晶体的空间格子(简称为晶格),Tm,n,p=ma+nb+pc(m,n,p=0,1,),平移矢量,晶胞的大小与形状:由晶胞参数 a,b,c,a,b,g 表示,a,b,c为六面体边长,a,b,g 分别是bc,ca,ab 所组成的夹角。晶胞的内容:粒子的种类,数目及它在晶胞中的相对位置。按晶胞参数的差异将晶体分
13、成七种晶系,晶胞的两个要素,七大晶系,根据晶胞特征,可以划分成七个晶系(crystal system),2.2 晶系和14种Bravais格子,根据点阵点在平行六面体单位中分布的数目和位置不同,可分为四种情况,初基(简单)点阵 P 一个阵点,底心点阵 C,A或B 两个阵点,体心点阵 I 两个阵点,(4)面心点阵 F 四个阵点,14种Bravais格子,若平面周期性图案是由下图所示的单位重复堆砌而成,试问哪些单位是最小的重复单位,哪些不是?对不是者,其最小单位是什么样的形状?,1,2,3,正交P,单斜,三 图象法,3.1 理想晶体与实际晶体,理想晶体:与点阵结构完全一致,尺度无限大 不存在,原因
14、:(1)实际晶体大小有限,处于晶体表面的质点和内部的质点不能平移复原。(2)晶体中的质点在其平衡位置作振动,即使在0K也不停止。(3)晶体中存在位错、裂缝、杂质包藏等缺陷。,3.2 晶体几何的经验规律,(1)晶面角守恒定律,石英晶体的各种外形,ab=14147,bc=12000,ac=11308,晶面角守恒定律:在不同条件条件下生长的同一成分的同种晶体之间,其对应晶面间的夹角恒等。-第一晶体学定理,宏观晶体的典型外貌特征是一组面平棱直的晶面所围成的凸多面体,(2)有理指数(整数)定律,选三个不共面、相交于一点的晶棱OI、OII、OIII,再在这个晶体上取两个不平行的晶面A1B1C1和A2B2C
15、2。这两个晶面在晶棱上的截距分别为OA1、OB1、OC1、OA2、OB2、OC2。,整数,3.3 宏观晶体的几何表征,(1)坐标系,结晶学坐标系,六方和三方晶系 H 坐标,d=ab,(2)晶面的标记:Miller指数(hkl),定义:设与一晶面平行的某二维点阵平面在晶轴a轴、b轴、c轴上的截距分别为(ox,oy,oz),则,h:k:l为互质整数比,h,k,l 称为该晶面的Miller指数,通常称为晶面指数(face-indices)。,晶面用(hkl)表示,截距系数,注:(1)当阵点平面平行于X轴时,其截距为无穷大,则,同样可得:(h0l),(hk0),(00l),(0k0)等晶面指数;,(2
16、)晶体结构中,凡属于同一阵点平面族的平面指数相同,皆为(hkl);,(3)在六方晶系中,晶面指数为(hkil)。,指出各晶面指数,并说明晶面指数与平面点阵点密度的关系,(110),(100),(010),(210),(120),实际应用上,就一般情况来说,不在于如何去具体测量晶面符号,而是看到一个晶面符号后能够明白它的含义,想象出它在晶体上的方位。,(1)米勒符号中某个数为0时,表示该晶面与相应的结晶轴平行:第一个指数为0,表示晶面平行于a轴;第二个指数为0,表示平行b轴;最后一个指数为0,则表示平行c轴。,(2)同一米勒符号中,指数的绝对值越大,表示晶面在相应结晶轴上的截距系数(绝对值)越小
17、;在轴单位相等的情况下,还表示相应截距的绝对长度也越短,而晶面本身与该结晶轴之间的夹角则越大。,(3)在同一晶体中,如有两个晶面,它们对应的三组米勒指数的绝对值全都相等,而正负号恰好全部相反,则此二晶面必互相平行。例如(130)与(130)就代表一对相互平行的晶面。,面网密度小的晶面优先生长,生长速度快的晶面在生长过程中被淹没,(3)晶棱的符号,(x2-x1):(y2-y1):(z2-z1)=u:v:w=x0:y0:z0,x0:y0:z0=u:v:w,u,v,w互质整数,u:v:w记作uvw成为晶向指数,100 010 001,立方简单晶胞的一些重要阵点平面,x,z,y,3.4 单形和晶带,单
18、形-一个晶体中,彼此间能对称重复的一组晶面的组合,也就是能借助于对称要素作用而相互联系起来的一组晶面的组合。,不考虑左右形,有47种几何单形,146种结晶学单形,由普通晶面构成的单形称为一般单形由特殊晶面构成的单形称为特殊单形,晶带-彼此间交棱相互平行的一组晶面组合。,晶带定律:任一属于uvw晶带的晶面(hkl),必定有 uh+vk+wl=0,3.5 晶体的投影,(1)晶体的球面投影,以晶体的质心为球心,任意半径作参考球面,称为投影球面;过球心作某晶面的外法线,它与球面的交点即该晶面的球面投影点,称为晶面的极点(face pole)。,极点间的圆弧=晶面之间二面角,(2)晶体的极射赤平投影,以
19、球的赤道面为投影面 Q,与 Q 垂直的直径为投影轴,投影轴与球面交于上投影 N 和下投影 S。将上半球面上的极点 P 与S 极直线相连,交于投影面于P 点,P 即 P 的极射赤平投影。,水平晶面的极射赤平投影点必定位于基圆的中心,垂直晶面的极射赤平投影在基圆。,不仅可以对晶体的晶面作极射赤平投影,亦可对晶体的对称元素作极射赤平投影。,对称元素是它本身投影,晶面是晶面的法线投影,3.4 对称元素的极射赤平投影,两种平面的极射赤平投影,微观对称元素符号,点群为4的晶体;彩钼铅矿PbMoO4,4重对称轴及由4重对称旋转相联系的4个面的极射投影,例:,3.7 吴氏网,赤式极射赤平投影网,它的投影系以赤
20、道上的某点作为视点,投影平面则为通过球心而且垂直于视点与球心连线的平面,与赤道面正好垂直。,四 对称原理,对称性是晶体的基本性质之一,一切晶体都是对称的;但不同晶体的对称性往往又是互有差异的:因此,可以根据晶体对称特点上差异来对晶体进行科学的分类。此外,晶体的对称性不仅包含几何意义上对称,而且也包含物理意义上的对称。它们对于我们理解晶体的一系列性质和识别晶体,以至对晶体的利用都具有重要的意义。晶体的对称性首先最直观地表现在它们的几何多面体外形上,以及其他方面的宏观性质上。,石英晶体,明矾晶体,重铬酸钾晶体,旋转对称对物体的作用,镜面对称对物体的作用,反演对称对物体的作用,对称(symmetry
21、)就是物体相同部分有规律的重复。对称变换(symmetry conversion)亦称对称操作(symmetry operation),它是指:能够使对称物体(或图形)中的各个相同部分,作有规律重复的变换动作。对称要素(symmetry element)则是指:在进行对称变换时所凭借的几何要素点、线、面等。,NH3分子结构,对称操作的集合构成的群称为对称操作群,3重旋转构成的群 C3,群论基础,定义:在元素的集合G上定义一种结合法(称为乘法),若G对于给定的乘法满足下述四条公设,则集合G称为一个群(group):1.满足封闭性。G 中任何两个(不同的或相同的)元素 a和 b,它们的乘积 ab
22、仍是 G 中元素。2.结合律成立。G 中任何元素 a,b,c 有(ab)c=a(bc)。3.单位元e存在。对于G中任何元素 a,有ea=ae=a。单位元 e 也称为恒等元,也记为1。4.逆元素存在。对于G中每一元素a,都有G中的一个元素 b=a-1,称为 a 的逆元,使得 ab=ba=1。,例2:群G=1,-1,i,-i的乘法表,有限群中互不相同的元素的个数称为 该群的阶,例2 中的 1,-1 的乘法也构成一个群,则称为是群 G 的子群,G则称为母群。,例1 是对称操作群,对称群中两个元素的乘积定义为顺次进行两个操作,乘积 a2a1表示先操作 a1,后操作 a2,即先右边的操作。,群的乘积不一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 晶体学 基础知识 导论 衍射
链接地址:https://www.31ppt.com/p-5060179.html