方差分析及matlab实现.ppt
《方差分析及matlab实现.ppt》由会员分享,可在线阅读,更多相关《方差分析及matlab实现.ppt(90页珍藏版)》请在三一办公上搜索。
1、第1章 方差分析(analysis of variance),1 单因素方差分析 1.1 数学模型 1.2 统计分析 1.3 方差分析表 1.4 Matlab实现2 双因素方差分析 2.1 数学模型 2.2 无交互影响的双因素方差分析 2.3 有交互影响的双因素方差分析 2.4 Matlab实现,第1章 方差分析,在工农业生产和科学研究中,经常遇到这样的问题:影响产品产量、质量的因素很多,我们需要了解在这众多的因素中,哪些因素对影响产品产量、质量有显著影响.为此,要先做试验,然后对测试的结果进行分析.方差分析就是分析测试结果的一种方法.,在方差分析中,把在试验中变化的因素称为因子,用A、B、C
2、、.表示;因子在试验中所取的不同状态称为水平,因子A的r个不同水平用A1、A2、.、Ar表示.,1 单因子方差分析,1.1 基本概念与数学模型,例:为寻求适应本地区的高产油菜品种,今选了五种不同品种进行试验,每一品种在四块试验田上得到在每一块田上的亩产量如下:,我们要研究的问题是诸不同品种的平均亩产量是否有显著差异.,试验的目的就是要检验假设 H0:1=2=3=4=5是否成立.若是拒绝,那么我们就认为这五种品种的平均亩产量之间有显著差异;反之,就认为各品种间产量的不同是由随机因素引起的.方差分析就是检验假设的一种方法.,在本例中只考虑品种这一因子对亩产量的影响,五个不同品种就是该因子的五个不同
3、水平.由于同一品种在不同田块上的亩产量不同,我们可以认为一个品种的亩产量就是一个总体,在方差分析中总假定各总体独立地服从同方差正态分布,即第i个品种的亩产量是一个随机变量,它服从分布N(i,2),i=1,2,3,4,5.,设在某试验中,因子A有r个不同水平A1,A2,.,Ar,在Ai水平下的试验结果Xi服从正态分布N(i,2),i=1,2,.,r,且X1,X2,.,Xr间相互独立.现在水平Ai下做了ni次试验,获得了ni个试验结果Xij,j=1,2,.,ni这可以看成是取自Xi的一个容量为ni的样本,i=1,2,.,r.,实际上,方差分析是检验同方差的若干正态总体均值是否相等的一种统计方法.,
4、在实际问题中影响总体均值的因素可能不止一个.我们按试验中因子的个数,可以有单因子方差分析,双因子分析,多因子分析等.例中是一个单因子方差分析问题.,由于XijN(i,2),故Xij与i的差可以看成一个随机误差ijN(0,2).这样一来,可以假定Xij具有下述数据结构式:,为了今后方便起见,把参数的形式改变一下,并记,称为一般平均,i为因子A的第i 个水平的效应.,Xij=i+ij,i=1,2,.,r;j=1,2,.,ni其中诸ijN(0,2),且相互独立.要检验的假设是 H0:1=2=r,在这样的改变下,单因子方差分析模型中的数据结构式可以写成:,所要检验的假设可以写成:,为了导出检验假设的统
5、计量,下面我们分析一下什么是引起诸Xij 波动的原因.,平方和分解公式:引起诸Xij 波动的原因有两个:一个是假设H0为真时,诸Xij的波动纯粹是随机性引起的;另一个可能是假设H0不真而引起的.因而我们就想用一个量来刻划诸Xij之间的波动,并把引起波动的两个原因用另两个量表示出来,这就是方差分析中常用的平方和分解法.,1.2 统计分析,其中交叉乘积项,下面我们来看各式的意义,检验统计量的构造:,对于各组样本有,因此,一般,当FF0.01时,称因子的影响高度显著,记为“*”;当F0.01FF0.05时,称因子的影响显著,记为“*”;当FF0.05时,称因子无显著影响,即认为因子各水平间无差异.,
6、检验过程:,1.3 方差分析表,例:为寻求适应本地区的高产油菜品种,今选了五种不同品种进行试验,每一品种在四块试验田上得到在每一块田上的亩产量如下:,我们要研究的问题是诸不同品种的平均亩产量是否有显著差异.,解:先列表计算,例:下面给出了随机选取的,用于计算器的四种类型的电路的响应时间(以毫秒计).表:电路的响应时间,这里试验的指标是电路的响应时间.电路类型为因素.这一因素有四个水平,试验的目的是要考察各类型电路对响应时间的影响.,设四种类型电路的响应时间的总体均为正态,且各总体方差相同,但参数均未知.又设各样本相互独立.,解,分别以m1,m2,m3,m4记类型I,II,III,IV四种电路响
7、应时间总体的平均值.我们需检验(a=0.05)H0:m1=m2=m3=m4,H1:m1,m2,m3,m4不全相等.现在n=18,s=4,n1=n2=n3=5,n4=3,ST,SA,SE的自由度依次为17,3,14,因F0.95(3,14)=3.343.76 F0.99(3,14)=5.56,故认为各类型电路的响应时间有显著差异.,1.4.单因素方差分析的Matlab实现,单因素方差分析:anova1调用格式:(1)p=anova1(X)(2)p=anova1(X,group)(3)p=anova1(X,group,displayopt)(4)p,table=anova1(.)(5)p,tabl
8、e,stats=anova1(.),(2)p=anova1(X,group),输入:X是一个向量,从第一个总体的样本到第r个总体的样本依次排列,group是与X有相同长度的向量,表示X中的元素是如何分组的.group中某元素等于i,表示X中这个位置的数据来自第i个总体.因此group中分量必须取正整数,从1直到r.,(1)p=anova1(X)%比较X中各列数据的均值是否相等。此时输出的p是零假设成立时,数据的概率,,当p0.05称差异是显著的,当p0.01称差异是高度显著的.,输入X各列的元素相同,即各总体的样本大小相等,称为均衡数据的方差分析。不均衡时用下面的命令:,Table输出anov
9、a表:,stats输出boxplot图:,X=2.1650 3.6961 1.5538 3.6400 4.95511.6268 2.0591 2.2988 3.8644 4.20111.0751 3.7971 4.2460 2.6507 4.23481.3516 2.2641 2.3610 2.7296 5.86170.3035 2.8717 3.5774 4.9846 4.9438;p=anova1(X)p=5.9952e-005,例.某水产研究所为了比较四种不同配合饲料对鱼的饲喂效果,选取了条件基本相同的鱼20尾,随机分成四组,投喂不同饲料,经一个月试验以后,各组鱼的增重结果列于下表。,表
10、 饲喂不同饲料的鱼的增(单位:10g),四种不同饲料对鱼的增重效果是否显著?,解:这是单因素均衡数据的方差分析,Matlab程序如下:,A=31.927.931.828.435.9 24.825.726.827.926.2 22.123.627.324.925.8 27.030.829.024.528.5;%原始数据输入,B=A;%将矩阵转置,Matlab中要求各列为不同水平,p=anova1(B),运行后得到一表一图,表是方差分析表(重要);图是各列数据的盒子图,离盒子图中心线较远的对应于较大的F值,较小的概率p.,表中所列出的各项意义如下:,因为p=0.00290.01,故不同饲料对鱼的增
11、重效果极为显著.如果没有给出概率。,四种不同饲料对鱼的增重效果极为显著,那么哪一种最好呢?请看下图,此时,第一个图对应第一种饲料且离盒子图中心线较远,效果最突出。如果从原始数据中去掉第一种饲料的试验数据,得到的结果为各种饲料之间对鱼的增重效果不显著.,p=anova1(B(:,2:4),例.为比较同一类型的三种不同食谱的营养效果,将19支幼鼠随机分为三组,各采用三种食谱喂养.12周后测得体重,三种食谱营养效果是否有显著差异?,解:这是单因素非均衡数据的方差分析,A=164 190 203 205 206 214 228 257 185 197 201 231 187 212 215 220 2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方差分析 matlab 实现
链接地址:https://www.31ppt.com/p-5059479.html