常微分方程总结.ppt
《常微分方程总结.ppt》由会员分享,可在线阅读,更多相关《常微分方程总结.ppt(71页珍藏版)》请在三一办公上搜索。
1、常微分方程,偏微分方程,含未知函数及其导数的方程叫做微分方程.,方程中所含未知函数导数的最高阶数叫做微分方程,(本章内容),(n 阶显式微分方程),微分方程的基本概念,一般地,n 阶常微分方程的形式是,的阶.,分类,或,机动 目录 上页 下页 返回 结束,使方程成为恒等式的函数.,通解,解中所含独立的任意常数的个数与方程,确定通解中任意常数的条件.,n 阶方程的初始条件(或初值条件):,的阶数相同.,特解,通解:,特解:,微分方程的解,不含任意常数的解,定解条件,其图形称为积分曲线.,机动 目录 上页 下页 返回 结束,定义3,2.微分方程的解(几何意义):,转化,可分离变量微分方程,机动 目
2、录 上页 下页 返回 结束,第二节,解分离变量方程,可分离变量方程,第七章,分离变量方程的解法:,设 y(x)是方程的解,两边积分,得,则有恒等式,当G(y)与F(x)可微且 G(y)g(y)0 时,说明由确定的隐函数 y(x)是的解.,则有,称为方程的隐式通解,或通积分.,同样,当F(x),=f(x)0 时,上述过程可逆,由确定的隐函数 x(y)也是的解.,机动 目录 上页 下页 返回 结束,形如,的方程叫做齐次方程.,令,代入原方程得,两边积分,得,积分后再用,代替 u,便得原方程的通解.,解法:,分离变量:,机动 目录 上页 下页 返回 结束,第三节 齐次方程,内容小结,1.微分方程的概
3、念,微分方程;,定解条件;,2.可分离变量方程的求解方法:,说明:通解不一定是方程的全部解.,有解,后者是通解,但不包含前一个解.,例如,方程,分离变量后积分;,根据定解条件定常数.,解;,阶;,通解;,特解,y=x 及 y=C,机动 目录 上页 下页 返回 结束,3.齐次方程的求解方法:,令,找出事物的共性及可贯穿于全过程的规律列方程.,常用的方法:,1)根据几何关系列方程(如:P263,5(2),2)根据物理规律列方程(如:例4,例 5),3)根据微量分析平衡关系列方程(如:例6),(2)利用反映事物个性的特殊状态确定定解条件.,(3)求通解,并根据定解条件确定特解.,3.解微分方程应用题
4、的方法和步骤,机动 目录 上页 下页 返回 结束,一、一阶线性微分方程,一阶线性微分方程标准形式:,若 Q(x)0,称为非齐次方程.,1.解齐次方程,分离变量,两边积分得,故通解为,称为齐次方程;,机动 目录 上页 下页 返回 结束,对应齐次方程通解,齐次方程通解,非齐次方程特解,2.解非齐次方程,用常数变易法:,则,故原方程的通解,即,即,作变换,两端积分得,机动 目录 上页 下页 返回 结束,该定理易让我们想起线性代数中的一阶非齐次线性方程组的解的结构定理。,二、伯努利(Bernoulli)方程,伯努利方程的标准形式:,令,求出此方程通解后,除方程两边,得,换回原变量即得伯努利方程的通解.
5、,解法:,(线性方程),伯努利 目录 上页 下页 返回 结束,内容小结,1.一阶线性方程,方法1 先解齐次方程,再用常数变易法.,方法2 用通解公式,化为线性方程求解.,2.伯努利方程,机动 目录 上页 下页 返回 结束,思考与练习,判别下列方程类型:,提示:,可分离 变量方程,齐次方程,线性方程,线性方程,伯努利方程,机动 目录 上页 下页 返回 结束,可降阶高阶微分方程,机动 目录 上页 下页 返回 结束,第五节,一、型的微分方程,二、型的微分方程,三、型的微分方程,第七章,解法:降阶,一、,令,因此,即,同理可得,依次通过 n 次积分,可得含 n 个任意常数的通解.,型的微分方程,机动
6、目录 上页 下页 返回 结束,既不含未知函数y,也不含未知函数的导数,解法:连续积分n次,便得通解。,型的微分方程,设,原方程化为一阶方程,设其通解为,则得,再一次积分,得原方程的通解,二、,机动 目录 上页 下页 返回 结束,即含自变量x,不含未知函数y,三、,型的微分方程,令,故方程化为,设其通解为,即得,分离变量后积分,得原方程的通解,机动 目录 上页 下页 返回 结束,即含有未知函数y,不含自变量x,内容小结,可降阶微分方程的解法,降阶法,逐次积分,令,令,机动 目录 上页 下页 返回 结束,思考与练习,1.方程,如何代换求解?,答:令,或,一般说,用前者方便些.,均可.,有时用后者方
7、便.,例如,2.解二阶可降阶微分方程初值问题需注意哪些问题?,答:(1)一般情况,边解边定常数计算简便.,(2)遇到开平方时,要根据题意确定正负号.,例6,例7,机动 目录 上页 下页 返回 结束,n 阶线性微分方程的一般形式为,方程的共性,为二阶线性微分方程.,例1,例2,可归结为同一形式:,时,称为非齐次方程;,时,称为齐次方程.,复习:一阶线性方程,通解:,非齐次方程特解,齐次方程通解Y,机动 目录 上页 下页 返回 结束,证毕,二、线性齐次方程解的结构,是二阶线性齐次方程,的两个解,也是该方程的解.,证:,代入方程左边,得,(叠加原理),定理1.,机动 目录 上页 下页 返回 结束,是
8、不是所给二阶方程的通解?,问题:,说明:,不一定是所给二阶方程的通解.,例如,是某二阶齐次方程的解,也是齐次方程的解,并不是通解!,但是,则,为解决通解的判别问题,下面引入函数的线性相关与,线性无关概念.,机动 目录 上页 下页 返回 结束,定义:,是定义在区间 I 上的,n 个函数,使得,则称这 n个函数在 I 上线性相关,否则称为线性无关.,例如,,在(,)上都有,故它们在任何区间 I 上都线性相关;,又如,,若在某区间 I 上,则根据二次多项式至多只有两个零点,必需全为 0,可见,在任何区间 I 上都 线性无关.,若存在不全为 0 的常数,机动 目录 上页 下页 返回 结束,两个函数在区
9、间 I 上线性相关与线性无关的充要条件:,线性相关,存在不全为 0 的,使,线性无关,常数,思考:,中有一个恒为 0,则,必线性,相关,(证明略),线性无关,机动 目录 上页 下页 返回 结束,定理 2.,是二阶线性齐次方程的两个线,性无关特解,则,数)是该方程的通解.,例如,方程,有特解,且,常数,故方程的通解为,(自证),推论.,是 n 阶齐次方程,的 n 个线性无关解,则方程的通解为,机动 目录 上页 下页 返回 结束,三、线性非齐次方程解的结构,是二阶非齐次方程,的一个特解,Y(x)是相应齐次方程的通解,定理 3.,则,是非齐次方程的通解.,证:将,代入方程左端,得,复习 目录 上页
10、下页 返回 结束,是非齐次方程的解,又Y 中含有,两个独立任意常数,例如,方程,有特解,对应齐次方程,有通解,因此该方程的通解为,证毕,因而 也是通解.,机动 目录 上页 下页 返回 结束,定理 4.,分别是方程,的特解,是方程,的特解.(非齐次方程之解的叠加原理),定理3,定理4 均可推广到 n 阶线性非齐次方程.,机动 目录 上页 下页 返回 结束,定理 5.,是对应齐次方程的 n 个线性,无关特解,给定 n 阶非齐次线性方程,是非齐次方程的特解,则非齐次方程,的通解为,齐次方程通解,非齐次方程特解,机动 目录 上页 下页 返回 结束,*四、常数变易法,复习:,常数变易法:,对应齐次方程的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 总结
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5052663.html