《简单的线性规划问题》教学课件.ppt
《《简单的线性规划问题》教学课件.ppt》由会员分享,可在线阅读,更多相关《《简单的线性规划问题》教学课件.ppt(20页珍藏版)》请在三一办公上搜索。
1、3.3.2 简单的线性规划问题,引例,某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?,解决问题,(1)用不等式组表示问题中的限制条件:,设甲、乙两种产品分别生产x、y件,由已知条件可得二元一次不等式组:,(2)画出不等式组所表示的平面区域:,如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。,解决问题,(3)提出新问题:,进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安
2、排利润最大?,解决问题,(4)尝试解答:,设工厂获得的利润为z,则z=2x+3y,求z的最大值。,解决问题,解决问题,(5)获得结果:,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元,相关概念,y,x,4,8,4,3,o,把求最大值或求最小值的的函数称为目标函数,因为它是关于变量x、y的一次解析式,又称线性目标函数。,满足线性约束的解(x,y)叫做可行解。,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题。,一组关于变量x、y的一次不等式,称为线性约束条件。,由所有可行解组成的集合叫做可行域。,使目标函数取得最大值或最小值的可行解叫做这个问题的最优解。,可行
3、域,可行解,最优解,例5、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?,分析:将已知数据列成表格,解:设每天食用xkg食物A,ykg食物B,总成本为z,那么,目标函数为:z28x21y,作出二元一次不等式组所表示的平面区域,即可行域,把目标函数z28x21y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 简单的线性规划问题 简单 线性规划 问题 教学 课件
链接地址:https://www.31ppt.com/p-5044752.html