《概率论与数理统计》经典课件-随机过程.ppt
《《概率论与数理统计》经典课件-随机过程.ppt》由会员分享,可在线阅读,更多相关《《概率论与数理统计》经典课件-随机过程.ppt(128页珍藏版)》请在三一办公上搜索。
1、2023/5/31,1,概率论与数理统计,2,随 机 过 程,3,关键词:随机过程 状态和状态空间 样本函数 有限维分布函数 均值函数 方差函数 自相关函数自协方差函数 互相关函数互协方差函数 正态过程 独立增量过程 泊松过程 维纳过程,第十章 随机过程及其统计描述,4,1 随机过程的概念,随机过程被认为是概率论的“动力学”部分,即它的研究对象是随时间演变的随机现象,它是从多维随机变量向一族(无限多个)随机变量的推广。给定一随机试验E,其样本空间S=e,将样本空间中的每一元作如下对应,便得到一系列结果:,5,一维、二维或一般的多维随机变量的研究是概率论的研究内容,而随机序列、随机过程则是随机过
2、程学科的研究内容。从前面的描述中看到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。,6,例1:抛掷一枚硬币的试验,样本空间是S=H,T,现定义:,7,8,9,例5:考虑抛掷一颗骰子的试验:,11,随机过程的分类:随机过程可根据参数集T和任一时刻的状态分为四类,参数集T可分为离散集和连续集两种情况,任一时刻的状态分别为离散型随机变量和连续型随机变量两种:连续参数连续型的随机过程,如例2,例3连续参数离散型的随机过程,如例1,例4离散参数离散型的随机过程,如例5离散参数连续型的随机过程,,12,2 随机过程的统计描述,13,例1:抛掷一枚硬币的试验,定义一随机过程:,14,例1:抛掷一
3、枚硬币的试验,定义一随机过程:,15,16,(二)随机过程的数字特征,17,18,19,20,续,21,22,(三)二维随机过程的分布函数和数字特征,23,24,25,3 泊松过程及维纳过程,26,独立增量过程的性质:,27,28,(一)泊松分布,29,30,续,31,证毕,32,33,34,35,36,37,定理一:强度为的泊松流(泊松过程)的点间间距是相互独立的随 机变量,且服从同一指数分布 定理二:如果任意相继出现的两个质点的点间间距是相互独立,且服从同一个指数分布:这两个定理刻画出了泊松过程的特征,定理二告诉我们,要确定一个计数过程是不是泊松过程,只要用统计方法检验点间间距是否独立,且
4、服从同一个指数分布。,则质点流构成强度为的泊松过程,38,(二)维纳过程,维纳过程是布朗运动的数学模型 以W(t)表示运动中一微粒从时刻t=0到时刻t0的位移的横坐标,且设W(0)=0。由于微粒的运动是受到大量随机的、相互独立的分子碰撞的结果,于是:粒子在时段(s,t上的位移可看作是许多微小位移的 和,根据中心极限定理,假设位移W(t)-W(s)服从正态分布是合理的。(2)由于粒子的运动完全由液体分子不规则碰撞而引起的,这样,在不相重叠的时间间隔内,碰撞的次数、大小和方向可假设相互独立,即W(t)具有独立增量,同时W(t)的增量具有平稳性。,39,40,41,42,关键词:无后效性(马尔可夫性
5、)齐次马尔可夫链 n步转移概率 n步转移概率矩阵 C-K方程 马氏链的有限维分布律 遍历性 极限分布(平稳分布),第十一章 马尔可夫链,1 马尔可夫过程及其概率分布,马尔可夫性(无后效性)过程(或系统)在时刻t0所处的状态为已知的条件下,过程在时刻tt0所处状态的条件分布与过程在时刻t0之前所处的状态无关。通俗地说,就是在已经知道过程“现在”的条件下,其“将来”不依赖于“过去”。,44,证毕!,45,由上例知,泊松过程是时间连续状态离散的马氏过程,维纳过程是时间状态都连续的马氏过程。时间和状态都离散的马尔可夫过程称为马尔可夫链,简称马氏链,记为:Xn=X(n),n=0,1,2,参数集T=0,1
6、,2,,记链的状态空间为:,46,47,Xm+1的状态,48,例2:(0-1传输系统)如图所示,只传输数字0和1的串联系统中,设每一级的传真率为p,误码率为q=1-p。并设一个单位时间传输一级,X0是第一级的输入,Xn是第n级的输出(n1),那么Xn,n=0,1,2是一随机过程,状态空间I=0,1,而且当Xn=i为已知时,Xn+1所处的状态的概率分布只与Xn=i有关,而与时刻n以前所处的状态无关,所以它是一个马氏链,而且还是齐次的,它的一步转移概率和一步转移概率矩阵分别为:,49,例3:一维随机游动。设一醉汉Q(或看作一随机游动的 质点)在直线上的点集I=1,2,3,4,5作随机游动,且仅在1
7、秒、2秒等时刻发生游动,游动的概率规则 是:如果Q现在位于点i(1i5),则下一时刻各以 的概率向左或向右移动一格,或以 的概率 留在原处;如果Q现在处于1(或5)这一点上,则下 一时刻就以概率1移动到2(或4)这点上,1和5这 两点称为反射壁,这种游动称为带有两个反射壁的 随机游动。,50,解:以Xn表示时刻n时Q的位置,不同的位置就是Xn的不同 状态;而且当Xn=i为已知时,Xn+1所处的状态的概率分布 只与Xn=i有关,而与Q在时刻n以前如何到达i完全无关,所以Xn,n=0,1,2 是一马氏链,且是齐次的。它的一步转移概率矩阵为:如果把1这点改为吸收壁,即Q一旦到达1这一点,则永远留在点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论与数理统计 概率论 数理统计 经典 课件 随机 过程
链接地址:https://www.31ppt.com/p-5043686.html