《空间几何体的结构》课件.ppt
《《空间几何体的结构》课件.ppt》由会员分享,可在线阅读,更多相关《《空间几何体的结构》课件.ppt(62页珍藏版)》请在三一办公上搜索。
1、新课标人教A版,高中数学必修2,奥运场馆,鸟巢,奥运场馆,水立方,世博场馆,中国馆,世博轴,演艺中心,第一章 空间几何体 1.1空间几何体的结构,学习目标1.能根据几何结构特征对空间物体进行分类;2.掌握棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;3.会表示有关几何体;4.能判断组合体是由哪些简单几何体构成的。,在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。,空间几何体,如果我们只考虑物体的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。,请观察下图中的物体,定义:,1.由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边
2、形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。,2.由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴。,1.1.1柱、锥、台、球的结构特征,下图中的物体具有什么样的共同的结构特征?,提出问题,有两个面互相平行;,其余各面都是平行四边形;,其余每相邻的两个四边形的公共边都互相平行,1.棱柱的结构特征,定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱。,棱柱的有关概念,棱柱的底面(底):棱柱的侧面:棱柱的侧棱:棱柱的顶点:,两个互相平行的面;,
3、其余各面;,相邻侧面的公共边;,侧面与底面的公共顶点.,棱柱的分类:棱柱的底面可以是三角形、四边形、五边形、我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、,三棱柱,四棱柱,五棱柱,1.侧棱不垂直于底的棱柱叫做斜棱柱2.侧棱垂直于底的棱柱叫做直棱柱3.底面是正多边形的直棱柱叫做正棱柱,棱柱的表示,用底面各顶点的字母表示棱柱,如图所示的六棱柱表示为:“棱柱ABCDEFABCDEF”,理解棱柱,探究1:,一个长方体,能作为棱柱底面的有几对?,答:长方体有三对平行平面;这三对都可以作为棱柱的底面,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?,答:不一定是如图所示的几何体,不是棱柱,探究
4、2:,长方体按如图截去一角后所得的两部分还是棱柱吗?,探究3:,A,B,C,D,A,B,C,D,长方体按如图截去一角后所得的两部分还是棱柱吗?,探究3:,A,B,C,D,A,B,C,D,E,F,G,H,F,E,H,G,答:都是棱柱,探究4:,观察右边的棱柱,共有多少对平行平面?能作为棱柱的底面的有几对?,答:四对平行平面;只有一对可以作为棱柱的底面,棱柱的任何两个平行平面都可以作为棱柱的底面吗?,答:不是,问题:下面的几何体有什么公共特点?,它们是当棱柱的一个底面收缩为一个点时 得到的几何体.,2.棱锥的结构特征,棱锥的结构特征,定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这
5、些面所围成的几何体叫做棱锥。,棱锥也用表示顶点和底面各顶点的字母表示。棱锥S-ABCD,底面是多边形(如三角形、四边形、五边形等),侧面是,三角形,有一个公共顶点的,观察下列棱锥,归纳它们的底面和侧面各有什么特征?,在同一个棱锥中的各个侧面三角形有什么共同特征?,棱锥的结构特征,棱锥的分类:,按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、,棱锥的性质:,侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。,讨论:棱柱、棱锥分别具有一些 什么几何性质?,用一个平行于棱锥底面的平面去截棱锥,得到怎样的两个几何体?,想一想:,用一个平行于棱锥底面的平面
6、去截棱锥,底面与截面之间的部分是棱台.,3.棱台的结构特征,棱台的有关概念:,棱台的分类:由三棱锥、四棱锥、五棱锥截得的棱台,分别叫做三棱台,四棱台,五棱台,棱台的表示方法:“棱台ABCDABCD”,棱台的特点:两个底面是相似多边形,侧面都是梯形;侧棱延长后交于一点。,练习:下列几何体是不是棱台,为什么?(课本P9 2),(1),(2),(1)不是棱台,因为此几何体的侧棱不相交于一点,不是由棱锥截得的。,(2)不是棱台,因为它不是由平行棱锥的底面的平面截得的几何体。,举出生活中棱柱,棱锥,棱台的事例。,想一想,怎样给多面体分类呢?,答:可以按面数分类,多面体有几个面就称为几面体。如:三棱锥是四
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间几何体的结构 空间 几何体 结构 课件
链接地址:https://www.31ppt.com/p-5042633.html