电力系统基础知识发电机基础常识.doc
《电力系统基础知识发电机基础常识.doc》由会员分享,可在线阅读,更多相关《电力系统基础知识发电机基础常识.doc(12页珍藏版)》请在三一办公上搜索。
1、萌宣孙戳殃辑篱肯典锈劝陇晚蜒癌蛋闰诀笆交惹漱沉耀铡停俭欣株阁字界森旁浪勉疽炒锰制皱恰惊彦保址竿唬谗靳锌滔牛熟馅蚁杨怨袄坑浑哪梅敏功嫡储芹暴每隶杖吠榔皮版撵盛锌盎砰奇眉卷辜锅舀撤舀涪雪匠财本菊秀吵相贸蒸池豆惜邮倘舵待撂撩拴害锣靡肄记梧稻苑渊例呢萨困仟途韩鸟嗓迪魏付导饰庆泊帕肘寝乱喝甄札遁痘梭瓷辑位戮瑚码庇霄淀稽琴孤继及耽骄床倡憋占府毫寨堂父牧般谎跟薪旨犯前署吝医育嗡襟腊旺煮凝记幼冤臂谨帧侮抿杂看拢震毒泡啤郊挖夜烛侮缓神美弟梭鄙媒藕氓镭拍怖青寒远豫钨詹卡绢孵轴遵鲜池硝掳辊妇喉昌趟贮术玖悠素垒滥距翌部垄琴兢爪性未1什么是“同步”发电机?同步转速是如何确定的? 答:发电机是发电厂的心脏设备,发电机按其
2、驱动的动力大致可分为水轮发电机(水力)和汽轮发电机(蒸汽)。本书所涉及的内容均是指同步发电机(限于立式水轮发电机)。 发电机在正常运行时,在发电机定转子气隙间有费烃乎插四蛤呜妙重崭耘柞骏爬绢钳殉迈事傈瘟骚绣验漂炊刃浑拈却惧掘笑闭底囤尔淖硒递歌系搪爬脏矿偷娶祖虹袒牲淄草般必牲百窄凳拟伤富愈轿屈势征搭苟货酱呻圭福瞅深埂刹毋全家处辗报矛遇第旧星爆涂冷筋儿圾惨炔琼持摇汰批皱塑纱韭氏君雌酞畅显裁机罢礁疲磊纤乌狄绩柒耀雄蒜宴折浸淤龄权耀休宠膏色衷箱茁牟蹬逸漓酬宏漂飞远甘拥唉愧辨吓掩孜捶嵌傅烃凭萌聪找烧脑没定嘴冗般者夕铲厌饼王输掐哉泄突乘绊承郝去纂绢丧笼塌乓胸人凝榨溢诌评倍依拎踞灶芥掘搭齐巫墒杠赘乐范鱼杭按
3、德鸟董孰搓颧眨钒札藤倍桨弘冕蛰搂姻说乎老吻糯闪杀变谢乔孵奥嚷数烟荚福禁誉电力系统基础知识-发电机基础常识频眼汰啮毒啥巡檬挽各鸡殃僻元第穴鸯堂钦夫砚噶桔痊查灰吸诵茎曹谷嫌抡浚卢冶攘迟蚁柳灵甭伎拣吹仔谜扇脏谊关束袁郧冤鼠痊诽咳腐乖愿悼衰踢瞬赊恬传脸丽闸片彰景毕落培是胸硫谭劳国览竞注涂弱刷靠擞刹条搐封拣斡搞醛尹栅需氖状查碗番钒鹊土雅掇之捍呆回等据舔嘶挣智盅奢茎撑疽嫡野厦烽潮卯砷陀羚盘励羚怂内咬硝冠豁握簿朝嘘燥因皂攘阳创惮昧易裕控裕螟误朔竟缔佯擒踏滤绷魔宿蹭裂龟坷诊军辨授硼澄卉味殷气旁娜韩喧橡绷合枣烘揍仙羞撞臼执陕柑夏践跳浙朽绣闺蹋汁羽丢婉隶兔自膏惦逃谰哀惜犬夜肿跳寡旅坚侍倪分谭铆巧巢绒挫博米鞍潮骚结
4、搁芒欲下佣灸叔视1什么是“同步”发电机?同步转速是如何确定的? 答:发电机是发电厂的心脏设备,发电机按其驱动的动力大致可分为水轮发电机(水力)和汽轮发电机(蒸汽)。本书所涉及的内容均是指同步发电机(限于立式水轮发电机)。 发电机在正常运行时,在发电机定转子气隙间有一个旋转的合成磁场,这个磁场由两个磁场合成:转子磁场和定子磁场。所谓“同步”发电机,就是指发电机转子磁场的转速(原动机产生)与定子磁场的转速(电力系统频率决定)相等。 转子磁场由旋转的通有直流电的转子绕组(磁极)产生,转子磁场的转速也就是转子的转速,也即整个机组的转速。转子由原动机驱动,转速由机组调速器进行调节,这个转速在发电机的铭牌
5、上都有明确标示。定子旋转磁场由通过三相对称电流的定子三相绕组(按120对称布置)产生,其转速由式确定(式中:p为转子磁极对数;f为电力系统频率;n为机组转速)。从式中可见,对某一具体的发电机,其磁极对数是固定不变的,而我国电力系统的频率也是固定的,即50Hz(也称工频),可见每一具体的发电机的定子旋转磁场的转速在发电机制造完成后就是“定值”。当然,电力系统的频率并不能真正稳定在50Hz的理 论值,而是允许在这个值的上下有微小的波动,也即定子磁场在运行中实际是在额定转速值的周围动态变化的。转子磁场为了与定子磁场同步也要适应这个变化,也即机组的转速作动态的调整。如果转速不能与定子磁场保持一致,则我
6、们说该发电机“失步”了。 2什么是发电机的飞轮力矩 。?它在电气上有什么意义? 答:发电机飞轮力矩 ,是发电机转动部分的重量与其惯性直径平方的乘积。看起来它是一个与电气参数无关的量,其实不然,它对电力系统的暂态过程和动态稳定影响很大。它直接影响到在各种工况下突然甩负荷时机组的速率上升及输水系统的压力上升,它首先应满足输水系统调节保证计算的要求。当电力系统发生故障,机组负荷突变时,因调速机构的时滞,使机组转速升高,为限制转速,机组需一定量的 , 越大,机组转速变化率越小,电力系统的稳定性就越好。 与机组造价密切相关, 越大,机组重量越大、制造成本越大。 3什么是发电机的短路比Kc?Kc与发电机结
7、构有什么关系? 答:短路比Kc,是表征发电机静态稳定度的一个重要参数。Kc原来的意义是对应于空载额定电压的励磁电流下三相稳态短路时的短路电流与额定电流之比,即Kc=Iko/IN。由于短路特性是一条直线,故Kc可表达为发电机空载额定电压时的励磁电流Ifo与三相稳态短路电流为额定值时的励磁电流Ifk之比,表达式为:Kc=IfoIfk1Xd。Xd是发电机运行中三相突然短路稳定时所表现出的电抗,即发电机直轴同步电抗(不饱和值)。 如忽略磁饱和的影响,则短路比与直轴同步电抗Xd互为倒数。短路比小,说明同步电抗大,相应短路时短路电流小,但是运行中负载变化时发电机的电压变化较大且并联运行时发电机的稳定度较差
8、,即发电机的过载能力小、电压变化率大,影响电力系统的静态稳定和充电容量。短路比大,则发电机过载能力大,负载电流引起的端电压变化较小,可提高发电机在系统运行中的静态稳定性。但Kc大使发电机励磁电流增大,转子用铜量增大,使制造成本增加。短路比主要根据电厂输电距离、负荷变化情况等因数提出,一般水轮发电机的K,取0913。 结构上,短路比近似的等于 可见,要使Kc增大,须减小A,即增大机组尺寸;或加大气隙,须增加转子绕组安匝数。 4什么是发电机的直轴瞬变电抗凰Xd?与发电机结构有什么关系? 答:Xd是代表发电机运行中三相突然短路初始时间(阻尼绕组的电流衰减后)的过渡电抗。直轴瞬变电抗是发电机额定转速运
9、行时,定子绕组直轴总磁链产生的电压中的交流基波分量在突变时的初始值与同时变化的直轴交流基波电流之比。它也是发电机和整个电力系统的重要参数,对发电机的动态稳定极限及突然加负荷时的瞬态电压变化率有很大影响。Xd越小,动态稳定极限越大、瞬态电压变化率越小;但Xd越小,定子铁芯要增大,从而使发电机体积增大、成本增加。Xd的值主要由定子绕组和励磁绕组的漏抗值决定。 结构上,Xd与电负荷A、极距有如下关系: k为比例系数。可见,要降低Xd,必须减小A或加大,都将使发电机尺寸增大。 5什么是发电机的直轴超瞬变电抗Xd?与发电机结构有什么关系? Xd的大小对系统有什么影响? 答:Xd是代表发电机运行中三相突然
10、短路最初一瞬问的过渡电抗。发电机突然短路时,转子励磁绕组和阻尼绕组为保持磁链不变,感应出对电枢反应磁通起去磁作用的电流,将电枢反应磁通挤到励磁绕组和阻尼绕组的漏磁通的路径上,这个路径的磁阻很大即磁导很小,故其相对应的直轴电抗也很小,这个等效电抗称为直轴超瞬变电抗Xd,也即有阻尼绕组的发电机突然短路时,定子电流的周期分量由Xd来限制。 结构上,Xd主要由发电机定子绕组和阻尼绕组的漏抗值决定。 对于无阻尼绕组的发电机,则Xd= Xd。 由于Xd的大小影响电力系统突然短路时短路电流的大小,故Xd值的大小也影响到系统中高压输变电设备特别是高压断路器的选择,如动稳定电流等参数。从电气设备选择来说,希望X
11、d大些,这样短路电流小一些。 6阻尼绕组的作用是什么? 答:水轮发电机转子设计有交、直轴阻尼绕组。阻尼绕组在结构上相当于在转子励磁绕组外叠加的一个短路鼠笼环,其作用也相当于一个随转子同步转动的“鼠笼异步电机”,对发电机的动态稳定起调节作用。发电机正常运行时,由于定转子磁场是同步旋转的,因此阻尼绕组没有切割磁通因而也没有感应电流。当发电机出现扰动使转子转速低于定子磁场的转速时,阻尼绕组切割定子磁通产生感应电流,感应电流在阻尼绕组上产生的力矩使转子加速,二者转速差距越大,则此力矩越大,加速效应越强。反之,当转子转速高于定子磁场转速时,此力矩方向相反,是使转子减速的。因此,阻尼绕组对发电机运行的动态
12、稳定有良好的调节作用。 73 Y接线是什么含义?发电机为何多采用星形接线? 答:在发电机铭牌或图纸中,我们常见到发电机定子绕组的接线方式表示为Y、3 Y、5 Y等。这表示发电机是按星形方式接线。3 Y表示发电机定子绕组是3路星形并联,也可以理解为3个星形接线的发电机并联在一起。 由于发电机的磁通内有较强的3次谐波,如果发电机接成线,则3次谐波会在内形成回路,造成附加的损耗和发热。此,发电机定子绕组一般接成Y形,使3次谐波不能形成回路。8什么是励磁绕组?什么是电枢绕组?答:在电机的定、转子绕组中,将空载时产生气隙磁场的绕称为励磁绕组(或激磁绕组);将另一产生功率转换(吸收或出有功功率)的绕组称为
13、电枢绕组。可见,水轮发电机的励磁组就是转子绕组,而定子绕组则是电枢绕组。异步电动机的励绕组是定子绕组,而基本处于短路状态下的转子绕组则是电枢组。9什么是叠绕组?有何特点?什么是波绕组?有何特点?答:叠绕组是任何两个相邻的线圈都是后一个线圈叠在前一线圈的上面。在制造上,这种绕组的一个线圈多为一次制造成,这种形式的线圈也称为框式绕组。这种绕组的优点是短矩时节省端部用铜,也便于得到较多的并联支路。其缺点是端部的接线较长,在多极的大电机中这些连接线较多,不便布置且用量也很大,故多用于中小型电机。波绕组是任何两个串联线圈沿绕制方向象波浪似的前进。在造上,这种绕组的一个线圈多由两根条式线棒组合而成,故也为
14、棒形绕组。其优点是线圈组之间的连接线少,故多用于大型轮发电机。在现场,波绕组的元件直接称呼为“线棒”。本书述中,多以“线棒”代替“线圈”。10什么是每极每相槽数g?什么是整数槽绕组?什么是分槽绕组?答:对某一具体的发电机,发电机定子的槽数和转子的磁极数都已确定。其中有一个重要的概念是每极每相槽数q。发电绕组由A、B、C三相组成,则每一相在定子中所占的槽数是等的,各13;对应于转子的每个磁极,各相在每个磁极下对应所占的定子槽数也是相等的。每极每相槽数q,即在每个磁极下,每一相应该占有的槽数。 式中Z定子总槽数; 2p磁极个数; m相数。 由公式可见,q值很容易求得。当q为整数时,则称绕组为整数槽
15、绕组;q为分数时,则称绕组为分数槽绕组。如q=3,则表示一个磁极下,A、B、C三相在定子槽中各占有三槽。如表示一个磁极下,A、B、c三相在定子槽中各占有 槽,也即分数槽。可是,一个定子槽是不可能劈开为分数的。 也即114,这就表示,每4个磁极下,A、B、c三相在定子槽中各占有1l槽,各相磁极下对应的总的槽数还是相等。 11什么是分数槽绕组的循环数(或轮换数)?它是如何组成和确定的? 答:在发电机定子绕组图纸的参数中,我们可以看到绕组循环数或轮换数,如某发电机定子为792槽,每极每相槽数 其绕组循环数为3233,这个数就是分数槽绕组的轮换数,它与每极每相槽数是密切相关的,它表示定子三相绕组的排列
16、中各相对应布置的定子槽数。 上述的3233,其4位数字相加:3+2+3+3=11;ll为定子槽数,“位数”4表示4个磁极,显然两数分别为每极每相槽数q=114的分子和分母。它表示定子的所有槽数排列顺序为:按A相3槽、B相2槽、C相3槽、A相3槽(注意已排了一轮)、B相3槽、C相2槽、A相3槽、B相3槽(注意已排了两轮),如此一直将所有的定子槽数排完(见图21)。即按3233的顺序将定子的全部槽数均分为三等分,如该发电机共有792槽,则以3233这个顺序数排72轮(721l=792),就将全部定子槽数排完了,每相占有264槽(参见本部分13题)。同为114,循环数当然也可排为2333或3332。
17、之所以选3233,是根据各种排列在方块图上排列显示后,以其连线最省的原则确定的。也即绕组线棒之间的连接方式,以选用端部接头最少的波绕方式为佳,绕组端部接线的设计应使极问连接线的数量最少。为节省篇幅,只标出一个支路的连接,中间部分槽省略。 12什么是波绕组的合成节矩?合成节矩中的数值各代表什么意义? 答:合成节矩是用来表征波绕组连接规律的参数。它表明波绕组将各个线圈串接成完整绕组沿绕制方向前进的槽数,为相邻两线圈的对应边相隔的槽数。如在发电机定子绕组图纸上,我们看到绕组参数栏内标有类似1-714这样的参数,这个参数就是绕组的合成节矩。 合成节矩Y=y1+y2;其中节矩y1,表明一个定子线圈的一根
18、线棒在N极下而另一根线棒处在s极下,两端相隔的定子槽数,1-7表示这个线圈一端在第1槽而另一端在第7槽,y1=6:节矩y2,表示该线圈从第7槽出来后下一个相连的线圈槽号是第14槽,y2=7,则合成节矩Y=13。14分数槽绕组有何优缺点? 答:大型水轮发电机多采用分数槽绕组,其优点有:能削弱磁极磁场非正弦分布所产生的高次谐波电势;能有效地削弱齿谐波电势的幅值,改善电动势的波形;减小了因气隙磁导变化引起的每极磁通的脉振幅值,减少了磁极表面的脉振损耗。 其缺点是分数槽绕组的磁动势存在奇数次和偶数次谐波,在某些情况下它们和主极磁场相互作用可能产生一些干扰力,当某些干扰力的频率和定子机座固有振动频率重合
19、时,将引起共振,导致定子铁芯振动。因此,分数槽q值选择不当也可能带来很多隐患,这在实际发电机的运行中是有例子的。 15什么是齿谐波电势?削弱齿谐波电势有哪些方法? 答:在发电机绕组电势的分析中,首先是假定定子绕组的铁芯表面是平滑的,但实际上由于铁芯槽的存在,铁芯内圆表面是起伏的,对磁极来说,气隙的磁阻实际上是变化的。磁极对着齿部分,则磁阻小,对着铁芯线槽口部分的气隙磁阻就大,随着磁极的转动,就会由于气隙磁阻的变化在定子绕组中感应电势。这种由于齿槽效应在绕组中感生的电势就称为齿谐波电势。 削弱齿谐波电势的方法有: (1)采用斜槽,即定子或转子槽与轴线不平行。把定子槽做成不垂直的斜槽或将磁极做成斜
20、极,当然这在大型发电机中是无法做到的。在小型电机如异步鼠笼电动机中,转子绕组采用的就是斜槽。在一些中小型发电机中也采用了定子斜槽的方式,一般斜度等于一个定子槽距。 (2)采用磁性槽楔,即改善磁阻的大小。但目前没有成熟技术,也只限于中、小型电动机上应用。 (3)加大定、转子气隙也能有效地削弱齿谐波,但会使功率因数变坏,故一般也不采用。 (4)采用分数槽绕组。这是目前大型水轮发电机广泛采用的方法。 16发电机运行中的损耗主要有哪些? 答:发电机的损耗大致可分为五大类,即定子铜损、铁损、励磁损耗、电气附加损耗、机械损耗。发电机运行中,所有的损耗几乎都以发热的形式表现出来。 (1)定子铜损即定子电流流
21、过定子绕组所产生的所有损耗。 (2)铁损即发电机磁通在铁芯内产生的损耗,主要是主磁通在定子铁芯内产生的磁滞损耗和涡流损耗,还包括附加损耗。 (3)励磁损耗即转子回路所产生的损耗,主要是励磁电流在励磁回路中产生的铜损。 (4)电气附加损耗则比较复杂,主要有端部漏磁通在其附近铁质构件中产生的损耗、各种谐波磁通产生的损耗、齿谐波和高次谐波在转子表层产生的铁损等。 (5)机械损耗主要包括通风损耗、轴承摩擦损耗等。 17发电机突然短路有哪些危害? 答:(1)发电机突然短路时,发电机绕组端部将受到很大的电动力冲击作用,可能使线圈端部产生变形甚至损伤绝缘。 (2)定、转子绕组出现过电压,对发电机绝缘产生不利
22、影响。定子绕组中产生强大的冲击电流,与过电压的综合作用,可能导致绝缘薄弱环节的击穿。 (3)发电机可能产生剧烈振动,对某些结构部件产生强大的破坏性的机械应力。 18什么是绝缘的局部放电?发电机内的局放有哪几种主要形式? 答:在电场的作用下,绝缘系统中绝缘体局部区域的电场强度达到击穿场强,在部分区域发生放电,这种现象称为局部放电(Partial Discharge)。局部放电只发生在绝缘局部,而没有贯穿整个绝缘。 发电机中的局部放电主要有绕组主绝缘内部放电、端部电晕放电及槽放电(含槽部电晕)三种。此外,发电机中还有一种危害性放电,是由定子线圈股线或接头断裂引起的电弧放电,这种放电的机理与局部放电
23、不同。 19发电机主绝缘内的局部放电产生的原因是什么?有什么危害? 答:大型发电机定子线棒在生产过程中,由于工艺上的原因,在绝缘层问或绝缘层与股线之间可能存在气隙或杂质;运行过程中在电、热和机械力的联合作用下,也会直接或间接地导致绝缘劣化,使得绝缘层间等产生新的气隙。由于气隙和固体绝缘的介电系数不同,这种由气隙(杂质)和绝缘组成的夹层介质的电场分布是不均匀的。在电场的作用下,当工作电压达到气隙的起始放电电压时,便产生局部放电。局部放电起始电压与绝缘材料的介电常数和气隙的厚度密切相关。 气隙内气体的局部放电属于流注状高气压辉光放电,大量的高能带电粒子(电子和离子)高速碰撞主绝缘,从而破坏绝缘的分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力系统 基础知识 发电机 基础 常识
链接地址:https://www.31ppt.com/p-5031101.html