《简单的线性规划》.ppt
《《简单的线性规划》.ppt》由会员分享,可在线阅读,更多相关《《简单的线性规划》.ppt(15页珍藏版)》请在三一办公上搜索。
1、,简单的线性规划,线性规划的实际应用,昌黎第六中学,复习线性规划,问题:设z=2x+y,式中变量满足下列条件:求z的最大值与最小值。,目标函数(线性目标函数),线性约束条件,线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,可行解:满足线性约束条件的解(x,y)叫可行解;,可行域:由所有可行解组成的集合叫做可行域;,最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。,可行域,2x+y=3,2x+y=12,(1,1),(5,2),复习线性规划,解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;
2、第三步:解方程的最优解,从而求出目标函数的最大值或最小值。,探索结论,复习线性规划,线性规划的实际应用,例1 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润 总额最大?,纺纱厂的效益问题,解线性规划应用问题的一般步骤:1、理清题意,列出表格;2、设好变元,列出线性约束条件(不 等式组)与目标函数;3、准确作图;4、根据题设精
3、度计算。,线性规划的实际应用,例1 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?,纺纱厂的效益问题,线性规划的实际应用,解:设生产甲、乙两种棉纱分别为x吨、y吨,利润总额为z元,则,Z=600 x+900y,作出可行域,可知直线Z=600 x+900y通过点M时利润最大。,解方程组,得点M的坐标,x=350/31
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 简单的线性规划 简单 线性规划
链接地址:https://www.31ppt.com/p-5029680.html