《数学分析》第五章导数和微分.ppt
《《数学分析》第五章导数和微分.ppt》由会员分享,可在线阅读,更多相关《《数学分析》第五章导数和微分.ppt(58页珍藏版)》请在三一办公上搜索。
1、第五章,导数和微分,1 导数的概念,一、问题的提出,1.自由落体运动的瞬时速度问题,如图,取极限得,2.切线问题,割线的极限位置切线位置,播放,如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线.,极限位置即,二、导数的定义,定义,其它形式,即,关于导数的说明:,注意:,播放,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.右导数:,单侧导数,1.左导数:,三、由定义求导数,步骤:,例1,解,例2,解,例3,解,更一般地,例如,例4,解,例5,解,例6,解,四、导数的几何意义与物理意义,1.几何意义,切线方程为,法线方程为,例7,解,由导数的几何意义,
2、得切线斜率为,所求切线方程为,法线方程为,2.物理意义,非均匀变化量的瞬时变化率.,变速直线运动:路程对时间的导数为物体的瞬时速度.,交流电路:电量对时间的导数为电流强度.,非均匀的物体:质量对长度(面积,体积)的导数为物体的线(面,体)密度.,五、可导与连续的关系,定理 凡可导函数都是连续函数.,证,连续函数不存在导数举例,例如,注意:该定理的逆定理不成立.,例如,例如,例8,解,六、小结,1.导数的实质:增量比的极限;,3.导数的几何意义:切线的斜率;,4.函数可导一定连续,但连续不一定可导;,5.求导数最基本的方法:由定义求导数.,6.判断可导性,不连续,一定不可导.,连续,直接用定义;
3、,看左右导数是否存在且相等.,思考题,思考题解答,练习题答案,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.切线问题,割线的极限位置切线位置,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学分析 第五 导数 微分
链接地址:https://www.31ppt.com/p-5027853.html