《实际问题与二次函数》利润问题.ppt
《《实际问题与二次函数》利润问题.ppt》由会员分享,可在线阅读,更多相关《《实际问题与二次函数》利润问题.ppt(34页珍藏版)》请在三一办公上搜索。
1、2.二次函数y=ax2+bx+c的图象是一条,它的对称轴是,顶点坐标是.当a0时,抛物线开口向,有最 点,函数有最 值,是;当 a0时,抛物线开口向,有最 点,函数有最 值,是。,抛物线,上,小,下,大,高,低,1.二次函数y=a(x-h)2+k的图象是一条,它的对称轴是,顶点坐标是.,抛物线,直线x=h,(h,k),基础扫描,3.二次函数y=2(x-3)2+5的对称轴是,顶点坐标是。当x=时,y的最 值是。4.二次函数y=-3(x+4)2-1的对称轴是,顶点坐标是。当x=时,函数有最 值,是。5.二次函数y=2x2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最 值,是。,直线x=3,(
2、3,5),3,小,5,直线x=-4,(-4,-1),-4,大,-1,直线x=2,(2,1),2,小,1,基础扫描,在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。,如果你去买商品,你会选买哪一家的?如果你是商场经理,如何定价才能使商场获得最大利润呢?,26.3 实际问题与二次函数,-利润问题,利润问题,一.几个量之间的关系.,2.利润、售价、进价的关系:,利润=,售价进价,1.总价、单价、数量的关系:,总价=,单价数量,3.总利润、单件利润、数量的关系:,总利润=,单件利润数量,二.在商品销售中,采用哪些方法增加利润?,教学目标知识技能:进一步运用二次函
3、数的概念解决实际问题。数学思考:在运用二次函数解决实际问题中的最大利润问 题的过程中,进一步体会数学建模思想,培养 学生的数学应用意识。解决问题:经历“实际问题建立模型拓展应用”的过 程,发展学生分析问题、解决问题的能力。情感态度:运用二次函数解决实际问题的过程中,体验 数学的实用性,提高学习数学的兴趣。,教学重难点教学重点:运用二次函数的意义和性质解决实际 问题。教学难点:运用二次例函数的思想方法分析解决实 际问题,在解决实际问题的过程中进一 步巩固二次函数的性质。,问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期
4、要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?,分析:没调价之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程。,6000,(20+x),(300-10 x),(20+x)(300-10 x),(20+x)(300-10 x)=6090,自主探究,已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?,若设销售单价x元,那么每件商品的利润可表示
5、为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程.,(x-40),300-10(x-60),(x-40)300-10(x-60),(x-40)300-10(x-60)=6090,问题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?,合作交流,解:设每件涨价为x元时获得的总利润为y元.,y=(60-40+x)(300-10 x)=(20+x)(300-10 x)=-10 x2+100 x+6000=-10(x2-10 x)+60
6、00=-10(x-5)2-25+6000=-10(x-5)2+6250,当x=5时,y的最大值是6250.,定价:60+5=65(元),(0 x30),怎样确定x的取值范围,问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,解:设每件降价x元时的总利润为y元.,y=(60-40-x)(300+20 x)=(20-x)(300+20 x)=-20 x2+100 x+6000=-20(x2-5x-300)=-20(x-2.5)2+6125(0 x20)所以定价为60-2.5=57
7、.5时利润最大,最大值为6125元.,怎样确定x的取值范围,问题4.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,由(2)(3)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?,答:综合以上两种情况,定价为65元时可获得最大利润为6250元.,小结:,1.当不改变价格时,每星期可获利润6000元.,2.若降价,每件服装降价2.5元时,即定价为57.5元时,所获利润最大,这时,最大利润为6125元.,3.若涨价,每件服装涨5元时.即定价
8、为65元时,获得利润最大,这时最大利润为6250元.,综上所述,当每件服装涨价5元时,获利润最大.,1.商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?,解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20 x)=-20 x2+200 x+4000=-20(x-5)2+4500 当x=5时,y最大=4500 答:当售价提高5元时,半月内可获最大利润4500元,牛刀小试,1.某果园有100棵橙子
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际问题与二次函数 实际问题 二次 函数 利润 问题
链接地址:https://www.31ppt.com/p-5027671.html