《推理与证明复习小结》课件.ppt
《《推理与证明复习小结》课件.ppt》由会员分享,可在线阅读,更多相关《《推理与证明复习小结》课件.ppt(15页珍藏版)》请在三一办公上搜索。
1、第二章推理与证明复习小结,推理与证明,推理,证明,合情推理,演绎推理,直接证明,数学归纳法,间接证明,比较法,类比推理,归纳推理,分析法,综合法,反证法,知识结构,一.综合法,证,证明:要证只需证只需证只需证只需证因为 成立.所以 成立.,二.分析法,三:反证法,问题一:求证:两条相交直线有且只有一个交点.,注:1.结论中的有且只有(有且仅有)形式出现,是唯一性问题,常用反证法 2.有且只有的反面包含1)不存在;2)至少两个.,问题二:求证一元二次方程至多-有两个不相等的实根.,注:所谓至多有两个,就是不可能有三个,要证“至多有两个不相等的实根”只要证明它的反面“有三个不相等的实根”不成立即可
2、.,问题:如图;已知L1、L2 是异面直线且 A、B L1,C、D L2,求证;AC,SD也是异面直线.,L1,L2,五.归纳、类比、猜想、证明,例:平面内有n条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f(n)等于n(n-1)/2.,证:(1)当n=2时,两条直线的交点只有1个,又f(2)=2(2-1)/2=1,因此,当n=2时命题成立.,(2)假设当n=k(k2)时命题成立,就是说,平面内满足 题设的任何k条直线的交点个数f(k)等于k(k-1)/2.,以下来考虑平面内有k+1条直线的情况.任取其中的1条直线,记作l.由归纳假设,除l以外的其他k条直线的交点个数f(k)等
3、于k(k-1)/2.,另外,因为已知任何两条直线不平行,所以直线l必与平面内其他k条直线都相交,有k个交点.,又因为已知任何三条直线不过同一点,所以上面的k个交点两两不相同,且与平面内其他的k(k-1)/2个交点也两两不相同.,从而平面内交点的个数是k(k-1)/2+k=k(k-1)+2/2=(k+1)(k+1)-1/2.,这就是说,当n=k+1时,k+1条直线的交点个数为:f(k+1)=(k+1)(k+1)-1/2.,根据(1)、(2)可知,命题对一切大于1的正整数都成立.,说明:用数学归纳法证明几何问题,重难点是处理好当 n=k+1时利用假设结合几何知识证明命题成立.,注:在上例的题设条件下还可以有如下二个结论:,(1)设这n条直线互相分割成f(n)条线段或射线,-则:f(n)=n2.,(2)这n条直线把平面分成(n2+n+2)/2个区域.,练习1:凸n边形有f(n)条对角线,则凸n+1边形的对角线-的条数f(n+1)=f(n)+_.,n-1,练习2:设有通过一点的k个平面,其中任何三个平面或 三个以上的平面不共有一条直线,这k个平面将 空间分成f(k)个区域,则k+1个平面将空间分成 f(k+1)=f(k)+_个区域.,2k,:平面内有n条直线,其中任何两条不平行,任何三条不过同一点,证明这n条直线把平面分成f(n)(n2+n+2)/2个区域.,作业:,再见,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 推理与证明复习小结 推理 证明 复习 小结 课件
链接地址:https://www.31ppt.com/p-5022427.html