《光纤通信讲义》课件.ppt
《《光纤通信讲义》课件.ppt》由会员分享,可在线阅读,更多相关《《光纤通信讲义》课件.ppt(107页珍藏版)》请在三一办公上搜索。
1、11 光纤通信发展的历史和现状 1.1.1 探索时期的光通信 1.1.2 现代光纤通信 1.1.3 国内外光纤通信发展的现状1 2 光纤通信的优点和应用 1.2.1 光通信与电通信 1.2.2 光纤通信的优点 1.2.3 光纤通信的应用1 3 光纤通信系统的基本组成 1.3.1 发射和接收 1.3.2 基本光纤传输系统 1.3.3 数字通信系统和模拟通信系统,第 1 章 概 论,返回主目录,1.1 光纤通信发展的历史和现状 1.1.1 探索时期的光通信,在这个时期,美国麻省理工学院利用He-Ne激光器和CO2激光器进行了大气激光通信试验。,由于没有找到稳定可靠和低损耗的传输介质,对光通信的研究
2、曾一度走入了低潮。,1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器,给光通信带来了新的希望。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。,1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。贝尔光电话是现代光通信的雏型。,原始形式的光通信:中国古代用“烽火台”报警,欧洲人用旗语传送信息。,1.1.2 现代光纤通信 1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了现代光通信光纤通信的基础。,指明
3、通过“原材料的提纯制造出适合于长距离通信使用的低损耗光纤”这一发展方向,光纤通信发明家高锟(左)1998年在英国接受IEE授予的奖章,1970年,光纤研制取得了重大突破 1970年,美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。把光纤通信的研究开发推向一个新阶段。1972年,康宁公司高纯石英多模光纤损耗降低到4 dB/km。1973 年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974 年降低到1.1dB/km。1976 年,日本电报电话(NTT)公司将光纤损耗降低到0.47 dB/km(波长1.2m)。在以后的 10 年中,波长为1.55 m的光纤损
4、耗:1979 年是0.20 dB/km,1984年是0.157 dB/km,1986 年是0.154 dB/km,接近了光纤最低损耗的理论极限。,1970 年,光纤通信用光源取得了实质性的进展 1970年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后,研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。虽然寿命只有几个小时,但它为半导体激光器的发展奠定了基础。1973 年,半导体激光器寿命达到7000小时。1976年,日本电报电话公司研制成功发射波长为1.3 m的铟镓砷磷(InGaAsP)激光器。1977 年,贝尔实验室研制的半导体激光器寿命达到10万小时。19
5、79年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55 m的连续振荡半导体激光器。,由于光纤和半导体激光器的技术进步,使 1970 年成为光纤通信发展的一个重要里程碑,实用光纤通信系统的发展 1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。1980 年,美国标准化FT-3光纤通信系统投入商业应用。1976 年和 1978 年,日本先后进行了速率为34 Mb/s的突变型多模光纤通信系统,以及速率为100 Mb/s的渐变型多模光纤通信系统的试验。1983年敷设了纵贯日本南北的光缆长途干线。随后,由美、日、英、法发起的第一条横跨大西
6、洋 TAT-8海底光缆通信系统于1988年建成。第一条横跨太平洋 TPC-3/HAW-4 海底光缆通信系统于1989年建成。从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。,光纤通信的发展可以粗略地分为三个阶段:第一阶段(19661976年),这是从基础研究到商业应用的开发时期。第二阶段(19761986年),这是以提高传输速率和增加传输距离为研究目标和大力推广应用的大发展时期。第三阶段(19861996年),这是以超大容量超长距离为目标、全面深入开展新技术研究的时期。,1.1.3 国内外光纤通信发展的现状 1976年美国在亚特兰大进行的现场试验,标志着光纤通信从基础研究发
7、展到了商业应用的新阶段。此后,光纤通信技术不断创新:光纤从多模发展到单模,工作波长从0.85 m发展到1.31 m和1.55 m(短波长向长波长),传输速率从几十Mb/s发展到几十Gb/s。随着技术的进步和大规模产业的形成,光纤价格不断下降,应用范围不断扩大。目前光纤已成为信息宽带传输的主要媒质,光纤通信系统将成为未来国家信息基础设施的支柱。在许多发达国家,生产光纤通信产品的行业已在国民经济中占重要地位。,光纤通信整体发展时间表,100000 10000 1000 100 10 1 0.1,1.2 光纤通信的优点和应用,1.2.1 光通信与电通信 通信系统的传输容量取决于对载波调制的频带宽度,
8、载波频率越高,频带宽度越宽。光通信的主要特点 载波频率高;频带宽度宽(图 1.1)光通信利用的传输媒质-光纤,可以在宽波长范围内获得很小的损耗。(图 1.2),图 1.1 部分电磁波频谱,图 1.2 各种传输线路的损耗特性,1.2.2 光纤通信的优点 容许频带很宽,传输容量很大 损耗很小,中继距离很长且误码率很小 重量轻、体积小 抗电磁干扰性能好 泄漏小,保密性能好 节约金属材料,有利于资源合理使用,1.2.3 光纤通信的应用 光纤可以传输数字信号,也可以传输模拟信号。光纤在通信网、广播电视网与计算机网,以及在其它数据传输系统中,都得到了广泛应用。光纤宽带干线传送网和接入网发展迅速,是当前研究
9、开发应用的主要目标。光纤通信的各种应用可概括如下:,通信网 构成因特网的计算机局域网和广域网 有线电视网的干线和分配网 综合业务光纤接入网,ATM,Internet骨干网,DDN/FR,PSTN/ISDN,TV,业务分配节点,(COT),业务接入节点(RT),网管,SNMP,与电信网管中心相连,Q3,100/1000M,E1/BRA/PRA,155M,622M SDH,典型应用之一:宽带综合业务光纤接入系统拓扑结构,典型应用之二:作为校园网的骨干传输网,1.3 光纤通信系统的基本组成,下图示出单向传输的光纤通信系统,包括发射、接收和作为广义信道的基本光纤传输系统。,基本光纤传输系统的三个组成部
10、分,1、光发送机组成框图:,结构参数:发送功率,dbm概念,光源光谱特性:输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长,电信号对光的调制的实现方式 直接调制 用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的。这种方案技术简单,成本较低,容易实现,但调制速率受激光器的频率特性所限制。外调制 把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的。外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用。,图 1.5两种调制方案(a)直接调制;(b)间接调制(外调
11、制),2.光纤线路 功能:是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机 组成:光纤、光纤接头和光纤连接器 低损耗“窗口”:普通石英光纤在近红外波段,除杂质吸收峰外,其损耗随波长的增加而减小,在0.85 m、1.31 m和1.55 m有三个损耗很小的波长“窗口”,见后图。光源激光器的发射波长和光检测器光电二极管的波长响应,都要和光纤这三个波长窗口相一致。目前在实验室条件下,1.55 m的损耗已达到0.154 dB/km,接近石英光纤损耗的理论极限。,0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5,衰减(dB/km),波长(m),普通单模光纤的衰减
12、随波长变化示意图,3、光接收机功能:是把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经放大和处理后恢复成发射前的电信号组成部分:耦合器,光电检测器,解调器组成框图:,结构参数:接收机灵敏度,定为BER10-9条件下,所要 求的最小平无接收功率。检测方式:直接检测和外差检测,1.3.3 数字通信系统和模拟通信系统 数字通信系统用参数取值离散的信号(如脉冲的有和无、电 平的高和低等)代表信息,强调的是信号和信息之间的一一对应关系;模拟通信系统则用参数取值连续的信号代表信息,强调的是变换过程中信号和信息之间的线性关系。这种基本特征决定着两种通信方式的优缺点和不同时期的发展趋势。,数字通
13、信系统的优点如下:抗干扰能力强,传输质量好。可以用再生中继,传输距离长。适用各种业务的传输,灵活性大。容易实现高强度的保密通信。数字通信系统大量采用数字电路,易于集成,从而实现小型化、微型化,增强设备可靠性,有利于降低成本。,模拟通信系统的优点 占用带宽较窄外,电路简单易于实现、价格便宜等。,2.1 光纤结构和类型 2.1.1 光纤结构 2.1.2 光纤类型2.2 光纤传输原理 2.2.1 几何光学方法 2.2.2 光纤传输的波动理论2.3 光纤传输特性 2.3.1 光纤色散 2.3.2 光纤损耗 2.3.3 光纤标准和应用2.4 光缆 2.4.1 光缆基本要求 2.4.2 光缆结构和类型 2
14、.4.3 光缆特性2.5 光纤特性测量方法 2.5.1 损耗测量 2.5.2 带宽测量 2.5.3 色散测量 2.5.4 截止波长测量,第 2 章 光纤和光缆,返回主目录,2.1 光纤结构和类型 2.1.1 光纤结构 光纤(Optical Fiber)是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1n2。,图2.1 光纤的外形,2.1.2 光纤类型 光纤种类很多,这里只讨论作为信息传输波导用的由高纯度石
15、英(SiO2)制成的光纤。实用光纤主要有三种基本类型,突变型多模光纤(Step-Index Fiber,SIF)渐变型多模光纤(Graded-Index Fiber,GIF)单模光纤(Single-Mode Fiber,SMF)相对于单模光纤而言,突变型光纤和渐变型光纤的纤芯直径都很大,可以容纳数百个模式,所以称为多模光纤,图 2.2三种基本类型的光纤(a)突变型多模光纤;(b)渐变型多模光纤;(c)单模光纤,图 2.3典型特种单模光纤(a)双包层;(b)三角芯;(c)椭圆芯,特种单模光纤 最有用的若干典型特种单模光纤的横截面结构和折射率分布示于图2.3,这些光纤的特征如下。双包层光纤 色散平
16、坦光纤(DispersionFlattened Fiber,DFF)色散移位光纤(DispersionShifted Fiber,DSF)三角芯光纤 椭圆芯光纤 双折射光纤或偏振保持光纤。,主要用途:突变型多模光纤只能用于小容量短距离系统。渐变型多模光纤适用于中等容量中等距离系统。单模光纤用在大容量长距离的系统。特种单模光纤大幅度提高光纤通信系统的水平 1.55m色散移位光纤实现了10 Gb/s容量的100 km的超大容量超长距离系统。色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。三角芯光纤有效面积较大,有利于提高输入光纤的光功率,增加传输距离。偏振保持光纤用在外差接
17、收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。,2.2 光纤传输原理,分析光纤传输原理的常用方法:几何光学法 麦克斯韦波动方程法,2.2.1 几何光学方法 几何光学法分析问题的两个出发点 数值孔径 时间延迟 通过分析光束在光纤中传播的空间分布和时间分布 几何光学法分析问题的两个角度 突变型多模光纤 渐变型多模光纤,图 2.4 突变型多模光纤的光线传播原理,1.突变型多模光纤 数值孔径 为简便起见,以突变型多模光纤的交轴(子午)光线为例,进一步讨论光纤的传输条件。设纤芯和包层折射率分别为n1和n2,空气的折射率n0=1,纤芯中心轴线与z轴一致,如图2.4。光线在光纤端面以小
18、角度从空气入射到纤芯(n0n2)。,改变角度,不同相应的光线将在纤芯与包层交界面发生反射或折射。根据全反射原理,存在一个临界角c。当c时,相应的光线将在交界面折射进入包层并逐渐消失,如光线3。由此可见,只有在半锥角为c的圆锥内入射的光束才能在光纤中传播。,根据这个传播条件,定义临界角c的正弦为数值孔径(Numerical Aperture,NA)。根据定义和斯奈尔定律 NA=n0sinc=n1cosc,n1sinc=n2sin90(2.2)n0=1,由式(2.2)经简单计算得到,式中=(n1-n2)/n1为纤芯与包层相对折射率差。NA表示光纤接收和传输光的能力,NA(或c)越大,光纤接收光的能
19、力越强,从光源到光纤的耦合效率越高。对于无损耗光纤,在c内的入射光都能在光纤中传输。NA越大,纤芯对光能量的束缚越强,光纤抗弯曲性能越好;但NA越大,经光纤传输后产生的信号畸变越大,因而限制了信息传输容量。所以要根据实际使用场合,选择适当的NA。,(2.3),时间延迟 根据图2.4,入射角为的光线在长度为L(ox)的光纤中传输,所经历的路程为l(oy),在不大的条件下,其传播时间即时间延迟为,式中c为真空中的光速。由式(2.4)得到最大入射角(=c)和最小入射角(=0)的光线之间时间延迟差近似为,(2.4),(2.5),这种时间延迟差在时域产生脉冲展宽,或称为信号畸变。由此可见,突变型多模光纤
20、的信号畸变是由于不同入射角的光线经光纤传输后,其时间延迟不同而产生的。,2.3 光纤传输特性,产生信号畸变的主要原因是光纤中存在色散,损耗和色散是光纤最重要的传输特性:损耗限制系统的传输距离 色散则限制系统的传输容量,2.3.1 光纤色散 1.色散、带宽和脉冲展宽 色散(Dispersion)是在光纤中传输的光信号,由于不同成分的光的时间延迟不同而产生的一种物理效应。色散的种类:模式色散 材料色散 波导色散,1.损耗的机理 图2.15是单模光纤的损耗谱,图中示出各种机理产生的损耗与波长的关系,这些机理包括吸收损耗和散射损耗两部分。吸收损耗 是由SiO2材料引起的固有吸收和由杂质引起的吸收产生的
21、。散射损耗 主要由材料微观密度不均匀引起的瑞利(Rayleigh)散射和由光纤结构缺陷(如气泡)引起的散射产生的。瑞利散射损耗是光纤的固有损耗,它决定着光纤损耗的最低理论极限。,图 2.15 单模光纤损耗谱,示出各种损耗机理,由图2.16看到:从多模突变型(SIF)、渐变型(GIF)光纤到单模(SMF)光纤,损耗依次减小。从色散的讨论中看到:从多模SIF、GIF光纤到SMF光纤,色散依次减小(带宽依次增大)。单模石英光纤的零色散波长在1.31 m,还可以把零色散波长从1.31 m移到1.55m,实现带宽最大损耗最小的传输。正因为这些特性,使光纤通信从SIF、GIF光纤发展到SMF光纤,从短波长
22、(0.85 m)“窗口”发展到长波长(1.31 m和1.55 m)“窗口”,使系统技术水平不断提高。,图 2.16光纤损耗谱(a)三种实用光纤;(b)优质单模光纤,2.3.3 光纤标准和应用 G.651多模渐变型(GIF)光纤 应用于中小容量、中短距离的通信系统。G.652常规单模光纤 是第一代单模光纤,其特点是在波长1.31 m色散为零,系统的传输距离只受损耗的限制。G.653色散移位光纤 是第二代单模光纤,其特点是在波长1.55 m色散为零,损耗又最小。这种光纤适用于大容量长距离通信系统。G.654 1.55 m损耗最小的单模光纤 其特点是在波长1.31 m色散为零,在1.55 m色散为1
23、720 ps/(nmkm),和常规单模光纤相同,但损耗更低,可达0.20 dB/km以下。色散补偿光纤 其特点是在波长1.55 m具有大的负色散。G.655非零色散光纤 是一种改进的色散移位光纤。,表2.3 光纤特性的标准,2.4 光缆,2.4.1 光缆基本要求 保护光纤固有机械强度的方法,通常是采用塑料被覆和应力筛选。光纤从高温拉制出来后,要立即用软塑料进行一次被覆和应力筛选,除去断裂光纤,并对成品光纤用硬塑料进行二次被覆。二次被覆光纤有紧套、松套、大套管和带状线光纤四种,见图2.18。应力筛选条件直接影响光纤的使用寿命。设对光纤进行拉伸应力筛选时,施加的应力为p,作用时间为tp(设为1s)
24、;长期使用时,容许施加的应力为r,作用时间为tr,断裂概率为106km一个断裂点。理论推算得到的容许作用时间(光纤使用寿命)tr 和应力比r/p的关系示于图2.17。,图 2.17 光纤使用寿命和应力比的关系,图 2.18二次被覆光纤(芯线)简图(a)紧套;(b)松套;(c)大套管;(d)带状线,2.4.2 光缆结构和类型 光缆一般由缆芯和护套两部分组成,有时在护套外面加有铠装。1.缆芯 缆芯通常包括被覆光纤(或称芯线)和加强件两部分。被覆光纤是光缆的核心,决定着光缆的传输特性。加强件起着承受光缆拉力的作用,通常处在缆芯中心,有时配置在护套中。,图 2.20光缆类型的典型实例(a)6芯紧套层绞
25、式光缆(架空、管道);(b)12芯松套层绞式光缆(直埋防蚁);(c)12芯骨架式光缆(直埋);(d)648芯束管式光缆(直埋);(e)108芯带状光缆;(f)LXE束管式光缆(架空、管道、直埋);(g)浅海光缆;(h)架空地线复合光缆(OPGW),光缆 的基本型式层绞式 把松套光纤绕在中心加强件周围绞合而构成。骨架式 把紧套光纤或一次被覆光纤放入中心加强件周围的螺旋形塑料骨架凹槽内而构成。中心束管式 把一次被覆光纤或光纤束放入大套管中,加强件配置在套管周围而构成。带状式 把带状光纤单元放入大套管内,形成中心束管式结构,也可以把带状光纤单元放入骨架凹槽内或松套管内,形成骨架式或层绞式结构。,2.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光纤通信讲义 光纤通信 讲义 课件
链接地址:https://www.31ppt.com/p-5020051.html