河南--椭圆及其标准方程(赵小强).doc
《河南--椭圆及其标准方程(赵小强).doc》由会员分享,可在线阅读,更多相关《河南--椭圆及其标准方程(赵小强).doc(6页珍藏版)》请在三一办公上搜索。
1、课题:椭圆及其标准方程教材:人教版高二(上)第八章第一节授课教师:河南许昌高级中学 赵小强教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神教学重点:椭圆的定义和椭圆的标准方程教学难点:椭圆标准方程的推导教学方法:探究式教学法,即教师通过问题诱导启发讨论探索结果,引导学生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、提升能力
2、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳教学过程:(一)设置情景,引出课题问题:2005年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程提问:点M运动时,F1、F2移动了吗?点M按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上
3、作图,思考绘图板上提出的问题:1在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作独立思考小组讨论共同交流的探究过程,得出这样三个结论: 椭圆 线段 不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距(四)椭圆标准方程的推导:1回顾:求曲线方程的一般步骤:建系、设点、列式、化简2提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结
4、果各组分别选定一种方案:(以下过程按照第一种方案)建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。设点:设是椭圆上任意一点,为了使的坐标简单及化简过程不那么繁杂,设,则设与两定点的距离的和等于列式: 化简:(这里,教师为突破难点,进行设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?)两边平方,得:即两边平方,得:整理,得:令,则方程可简化为:整理成:指出:方程叫做椭圆的标准方程,焦点在轴上,焦点是讨论:如果以所在直线为轴,线段的垂直平分线为轴,建立直角坐标系,焦点是,椭圆的方程又如何呢?让按照另外方案推导椭圆标准方程的同学发言并演示动画进行讨论得出:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南 椭圆 及其 标准 方程 赵小强
链接地址:https://www.31ppt.com/p-5019347.html