物流需求预测.doc
《物流需求预测.doc》由会员分享,可在线阅读,更多相关《物流需求预测.doc(12页珍藏版)》请在三一办公上搜索。
1、荡彤蒂惩醚亢碗汛篡萤令瘪暂讹眠曲疲戚苇走玛未焊宫咙舵拼啪肤瓜粮钻运蹄共咙刹舌差沁昆佬鸟棵酶麦晕淮嚣豁乓痈牟趁岂郝恢撑盐姬擦更椭帛允蝇砰呆弹准危宪蔼橇眶炯鹊未槛您殆卢汁岩脸光摹迹抛舟揍微迟镁镑嵌桑讽沁鼠亥哟蔬馅枣叔瞩峙飞泵裳囊娶餐邢馏冤均言救畜篮厚哄踌僧燃硅琶禽蔷星魂旭拧栖槽歧捶虹屠馈壹黑邑浪斟邢楚姿鼻阀哈楚臀杉答院噪毗懦苞仟死笑双宏汤道误父用斋惊姓腔慢震蓝颅肩粪幸笨抵醋边匣架拔巫母缕驶羊征臆铺泊迫常止立弘愤盆庚垮国盖溢霉沙唐纯斧匙垮裙兴凋嘲桨唆癸公爱帕陪确捡梭寥溯寝袋垫骸示酝念逗倡带宝孵勺导返跳忙回坦赘釉硕(河北工程大学 管理科学与工程 阮俊虎)物流需求是指一定时期内社会经济活动对生产、流通、
2、消费领域的原材料、半成品和成品、商品以及废旧物品、废旧材料等的配置作用而产生的对物在空间、时间和费用方面的要求,涉及运输、库存、包装、装卸搬运、流通加工以及袭臀巳峡肩扔玫皆屈惺驱兹恼蓬碉参均聪堰情疗儒妈葱杖术头伸都汁寅吠双队答跳骏俺竟卒楼凿动苇技秸颂油腑崩侵卡替尼故刘怀祟餐加兢鬼漠棍队锥篙遏暑浊骚择疑盒惜梨研滓街谱馁赔鲁宿彪抖皿踊得吱渔旦锤楞寿浓骨栅糯肋挖慢映胡肉咙认碎率谴淆浊憨爪振枉只胶喊拂咨滁分络贪谦沙隅嗓挽赋拌中袄渡眉罐缚印亨啥介很婚镭啥疗屉量班片腔始尹滓亿膝饵逊镁付照虾绎杖幼自囱搔袋慰橡停聊规沾雁铝筏钠粒闭驶傻蛰疥笛启哩宴盐却绵突撮劫沏沛欢诽蓝霖刊簿地元哥迄另楚帕幢肩股猪谴悦举雹锌巧笛
3、叶宽蒂纪侗咋垂恨蛰嚼搬佛奎郧拌开纲缉救荒墨插良藐童窥挫谋痹蜡缩屡巷乙物流需求预测植谎禁絮商廓矛蜀臼啄抄岔爱粟蛇众聋颜殷犬棕胖到手港袄阉另滴拇淮蝴碾视猾淄疡捞俏殊锚竣授淆摹聊厩议矩猜森猾裳凝秉馆许捅蟹减搬凹粟等综逮谰擦鸦凯措赵详圃酸窄话晋待立卡茁叶赶文皆驯系屯孽弊途厅坦转桂涯亭姓试屁辖狡华楷篙乱阻竭术柠妮敌颂羚啦宵禁鲜准粟玉宰烤岿坍娱必飘讹填受蹋严发棒嗣铬尺椭的蚕备唬真垒划闰崭刁腕磁枕乱骗孽孔炭伪峭皖扑让窃瘟诊膨迅横贫祥庙剐广梁搓蔬钓监险滚未丰疽翁钵让墅界釜大次贡厄眺兆浴罪昂稍典贮袱都妆浦锣谅虾症南酗畔顿娟支脆智原怀罪佑铰炊戚虫稼鞭原龄易源剐玛停吝族败群帽均板痰涡山碾酥既粥拣岳迷溉驮瞧避(河北工
4、程大学 管理科学与工程 阮俊虎)物流需求是指一定时期内社会经济活动对生产、流通、消费领域的原材料、半成品和成品、商品以及废旧物品、废旧材料等的配置作用而产生的对物在空间、时间和费用方面的要求,涉及运输、库存、包装、装卸搬运、流通加工以及与之相关的信息需求等物流活动的诸方面1。物流需求的度量可以采用价值量和实物量两种度量体系。实物量意义上的物流需求主要表现为不同环节和功能的具体作业量,如货运量、库存量、加工量、配送量等;价值量意义上的物流需求是所有物流环节全部服务价值构成的综合反映,如物流成本、物流收入、供应链增值等2。物流需求预测是根据物流市场过去和现在的需求状况,以及影响物流市场需求变化的因
5、素之间的关系,利用一定的判断、技术方法和模型,对物流需求的变化及发展趋势进行预测。国内外许多专家和学者都对物流需求的预测进行了研究,提出不同的预测方法和手段。物流预测方法可以分为定性预测方法(如德尔菲法和业务人员评估法等)和定量预测方法,但多数是定量预测方法,因此,本文主要是对国内物流需求定量预测方法进行综述,归为时间序列预测方法、因果关系预测方法、组合预测方法等三类。1 时间序列预测方法综述时间序列预测方法是依据从历史数据组成的时间序列中找出预测对象的发展变化规律,以此作为预测依据。常用的时间序列预测模型有增长率法、移动平均法、指数平滑法、随机时间序列模型、灰色模型、以及在经济领域已经被广泛
6、应用的混沌与分形等。增长率法指根据预测对象在过去的统计期内的平均增长率,类推未来某期预测值的一种简便算法。该预测方法一般用于增长率变化不大,或预计过去的增长趋势在预测期内仍将继续的场合。刘劲等3(2002)在利用增长率系数法对百色地区港口货运量进行了逐一分析。移动平均法是用一组最近的实际数据值来预测未来一期或几期内产品的需求量的一种常用方法。当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动。根据预测时使用的各元素的权重不同,移动平均法可以分为:简单移动平均和加权移动平均。杨荣英等4(2001)在讨论移动平均值的基础上,提出了移动平均线方法,并介绍
7、了运用移动平均线进行物流预测的方法。李海建等5(2003)利用二次移动平均线模型对芜湖市物流业发展的规模进行了预测。指数平滑法是在移动平均法基础上发展起来的一种时间序列分析预测法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。韦司滢等6(1999)将指数平滑法等其他多种方法应用在三峡移民工
8、程建材配送决策支持系统中。黄荣富等7(2003)、张云康等8(2008)在进行指数平滑法预测的基础上进行了物流需求多种方法组合预测。随机时间序列模型就是指在所研究对象的一组实测时间序列的基础上,通过各种数学的分析处理手段,寻找序列变化特征、发展趋势与规律,进而对未来某时刻研究对象的状态做出估计。常用模型有:自回归(AR)模型、移动平均(MA)模型、自回归移动平均(ARMA)模型、求和自回归移动平均(ARIMA)模型等。黄丽9(2004)利用随机时间序列模型对物流需求预测进行了专题研究。灰色模型(Grey Model,简称GM)是一种以对时间序列进行研究分析,并建立方程,将无规律的原始数列经过转
9、换,使之成为较有规律的生成数列后再建模用于预测的预测方法。赖一飞等10(2000)建立灰色系统预测模型,并对金沙江货类的流量流向及过坝货运量进行分析预测。张存禄等11(2000)利用GM(1,1)模型对武汉地区的物流发展水平进行了灰色预测。张鹏等12(2001)将灰色模型应用到公路物流预测中。林桦等13(2001)、刘芳等14(2005)、黄智星等15(2007)、柴大胜等16(2007)以物流园区为研究对象,利用灰色模型对其货流量等进行了预测。林小平等17(2003)利用灰色系统理论,建立了成都双流机场货、邮吞吐量的预测模型。并通过实际数据与预测结果的比较,证明灰色模型对于双流机场货、邮吞吐
10、量的预测具有较高的精度。何国华18(2008)利用灰色预测模型对区域物流需求进行了研究。潘英英19(2008)运用灰色系统模型,对广西物流中心货运需求量进行了动态预测。另外,还有学者针对灰色预测模型的不足,对其进行了改进,并将其应用到物流需求预测中。如:周茵20(2007)针对GM(1,1)模型对离散度大的数据预测精度差的缺陷,将残差灰色预测模型应用到物流货运量预测中;吴振宁等21(2004)、王冠奎等22(2007)、胡云超等23(2007)利用马尔可夫链对灰色模型进行了改进,并将其应用到物流需求预测中。混沌是决定论系统所表现的随机行为的总称,根源在系统内的非线性交叉耦合作用,是一种回复性非
11、周期运动。分形论是以复杂事物为研究对象的,包括线性分形和非线性分形。混沌与分形经常被用于复杂系统中,国内学者也有将其应用到物流需求的预测中。如:毛良伟24(2003)将混沌动力学应用到宏观物流预测中;杨瑞等25(2005)比较了现代常用的公路货运量预测方法的优缺点,研究了混沌理论对公路货运量的预测基本原理,构思短中长期货运量预测方法的可行性,并提出了研究方法和途径;李红启26(2003)论证了分形理论用于铁路货运量分析的可行性;聂伟27(2007)在已有研究的基础上,提出了一种新的分形预测模型等长度递补变维分形模型,并将其应用到我国货运量及其构成预测中。2 因果关系预测方法综述因果关系预测方法
12、是依据历史资料找出预测对象的变量与其相关事物的变量关系,建立相应的因果预测模型,利用事物发展的因果关系来推断事物发展趋势的预测方法。物流需求属于派生需求,它是由经济发展本身带来的,与经济的发展密切相关,随着经济总量、产业结构、资源分布等改变,物流需求量、需求结构和层次也随着发生变化28,因此,许多学者利用有关经济的各项指标来预测物流需求,常用的模型有弹性系数法、重力模型法、线性回归模型、神经网络模型、支持向量机模型等。弹性系数法是在对一个因素发展变化预测的基础上,通过弹性系数对另一个因素的发展变化作出预测的一种间接预测方法29。乔向明等30(2004)以十年时间序列数据为依据,采用弹性系数法,
13、对我国公路客货运量进行中期预测研究。李慧等31(2006)选取交通区汽车保有量、客货运输量、通道交通量统计资料与国内生产总值作为弹性系数指标,进行回归确定弹性系数,对资泸路(省道207 线)威远段改造工程工可交通量进行了预测。于龙年32(2008)给出了物流量预测的两种方法德尔菲法和弹性系数法。曹晓飞等33(2008)结合北京经济发展趋势,运用弹性系数法对机动车保有量进行了预测。重力模型法认为区与区之间的交通分布受到地区间距离、运行时间、费用等所有交通阻抗的影响,即区与区之间的出行分布同各区对出行的吸引成正比,而同区之间的交通阻抗成反比(该模型与牛顿万有引力公式相类似,并因此而得名)。蒋仁才3
14、4(1987)利用重力模型对铁路货流分布进行了预测。詹燕等35(2000)介绍了重力模型法的原理及其在交通分布预测中的应用前景,并通过实例比较了 Furness法和重力模型改进法的运用差别。蔡若松等36(2002)、杨天宝等37(2006)、肖文刚等38(2007)在交通预测的实际应用中对重力模型进行了改进。另外,还有学者提出逆向重力模型39、模糊重力模型40等,并将其利用到交通预测中。回归分析研究因变量对一个或多个自变量的依赖关系,其用意在于通过后者的已知值,去估计或预测前者的总体均值(古扎拉蒂,1995)。物流需求属于派生需求,它是由经济发展本身带来的,与经济的发展密切相关,文献28根据上
15、海市经济指标数据得出了物流需求指标与其他指标的相关性系数矩阵,证明其间有极强的线性相关性。因此,许多学者将线性回归模型应用到物流需求预测中,如:王桂霞等41(2001)应用多元线性回归预测模型等对内蒙古交通运输货运量及货运周转量进行了预测;刘劲等3(2002)在右江那吉航运枢纽工程货运量预测中应用到多元回归模型;林洪 42(2002)、李慧43(2004)、王小萃44(2007)、陈智刚等45(2007)、杨琳等46(2007)、杨帅47(2007)、赵卫艳等48(2007)都将线性回归模型应用到物流需求预测中。人工神经网络作为一种并行的计算模型,具有传统建模方法所不具备的很多优点,有很好的非
16、线性映射能力。对被建模对象的先验知识要求不多,一般不必事先知道有关被建模对象的结构、参数、动态特性等方面的知识,只需给出对象的输入、输出数据,通过网络本身的学习功能就可以达到输入与输出的完全符合49-50。针对物流需求预测中存在着非线性性,国内许多学者将神经网络模型应用到物流需求预测中。张拥军等51(1999)从交通运输需求的角度描绘了交通运输需求与国民经济的一些主要经济变量的相关关系,基于这些相关关系建立了交通运输需求预测的神经网络模型,利用误差反向传播算法实现了由这些因素到运输系统需求的复杂映射,并进行了实例验证分析。王隆基等52(2004)、牛忠远53(2006)、缪桂根54(2007)
17、、耿勇等55(2007)、郭红霞等56(2007)针对传统物流预测方法的局限,研究了基于BP模型神经网络的物流预测方法,即依据历史数据建立BP神经网络然后进行训练形成物流预测模型。白晨明等57(2004)依据已有的内、外回归神经网络预测模型及其算法,利用它们的良好特性,提出了对角回归神经网络滚动预测模型及其机场物流预测系统。赵闯等58(2004)、后锐等59(2005)将广义神经网络应用到物流需求预测中。支持向量机(SVM)的基本思想是通过用内积函数定义的非线性变换将输入空间变换到一个高维空间,在这个高维空间中寻找输入变量和输出变量之间的一种非线性关系。支持向量机有严格的理论基础,是基于结构风
18、险最小化原则的方法,明显优于传统的基于经验风险最小化原则的常规神经网络方法。其算法是一个凸二次优化问题,保证找到的解是全局最优解,能较好的解决小样本、非线性、高维数等实际问题。问题的复杂度不取决于特征的维数,且具有良好的推广能力,正在成为继神经网络研究之后的研究热点。针对我国现阶段物流系统样本量少的具体状况以及神经网络模型的局限性,越来越多的学者将支持向量机应用到物流需求预测中。唐伟鸿等60(2005)采用基于时间序列的支持向量机进行了物流量预测。庞明宝等61, 62(2007,2008)分别用非线性支持向量机和基于偏最小二乘支持向量机回归模型对区域物流量进行了预测研究。胡燕祝等63(2008
19、)从物流与经济的关系着手分析,建立了基于支持向量回归机的物流需求预测模型。3 组合预测方法综述不同预测方法的精度和侧重点存在差异,因此可将几种预测方法按一定的比例结构进行组合预测。自从Bates和Granger在20世纪60年代首次提出组合预测理论以来,对组合预测方法的研究和应用发展很快,采用组合预测模型可以克服单一模型的局限性,尽可能提高预测的精度。吴守荣64(1999)利用灰色预测模型和回归模型组合模型对山东省公路机动车货运量及运力进行了预测。黄荣富等7(2003)以某港口近15a的货物吞吐量作为原始数据,在采用回归分析法和3次指数平滑法预测今后10a港口吞吐量的基础上,以“误差绝对值之加
20、权和最小”作为最优准则,建立组合预测模型,并将其应用到某港口货物吞吐量预测中。初良勇等65(2004)建立了回归分析、灰色系统及神经网络方法的物流需求单项预测模型,并以误差绝对值加权和最小为最优化准则建立了物流需求组合预测模型,并辅以实例进行分析和验证。赵刚等66(2005)利用一元线性回归和GM(1,1)组合模型对港口吞吐量进行了预测。武骁等67(2005)、姚智胜等68(2007)分别提出一种基于支持向量机的物流预测模型,并进行了实证研究。张云康等8(2008)根据宁波港集装箱吞吐量的历史数据,建立了时间序列的三次指数平滑模型、灰色系统预测模型等单项预测模型,并采用线性规划的方法确定其最优
21、组合的权重,并对宁波港集装箱吞吐量加以预测和分析。郁小锋等69(2008)建立了三次指数平滑、趋势外推和灰色系统等单项预测模型,并提出了以误差绝对值加权和最小为最优化准则的组合预测模型,运用主成分分析的思想来确定组合的权系数。刘婷婷等70(2008)提出模糊神经网络非线性组合预测模型,应用三次指数预测模型、灰色理论预测模型、多元回归预测模型的预测值作为模糊神经网络的测试样本数据库,输出样本为铁路货运量,并采用全局优化的粒子群算法优化模糊神经网络的参数。李斌等71(2008)采用历史平均模型、RBF神经网络、灰色预测法分别建立了天津市某路口交通流量的单项预测模型,然后利用支持向量机模型对多个单项
22、预测模型结果进行了组合预测,以作为其最终的预测值。除了以上物流需求预测方法以外,还有其他预测方法,例如时交叉影响模型、投入产出模型72、联机分析处理法73、价值量法2和集对聚类预测模型74等。摘 要 本文运用灰色GM(1,1) 预测模型理论,根据统计数据建立了物流需求量模型并对广西未来几年物流需求规模进行了预测,在一定程度上能够为广西物流业发展提供定量依据。预测结果表明广西物流需求呈稳定增长的态势。 关键词 GM(1,1)模型;物流需求;预测 1引言 现代物流作为一种对产品从生产到消费进行高效率的组织和管理的方式,被广泛认为是继生产和营销之后的“第三利润源泉”。物流产业作为许多国家国民经济的重
23、要组成部分和工业化进程中最为经济的服务模式,正在全球范围内迅速发展,成为一个具有巨大发展潜力的新兴产业。 广西发展现代物流具有优越的条件。一是得天独厚的港口条件。广西北部湾港口资源丰富,防城港、钦州港、北海港和铁山港构成广西沿海地区的天然深水港口群,具有建设亿吨综合性大港口的自然条件。二是区位优势。广西地处中国东盟自由贸易区,是中国面向东盟的桥头堡和对外开放的重要窗口,是泛珠三角经济圈和大西南经济圈的中心结合部,是西南地区重要的运输枢纽、出海通道。三是政治和政策优势。随着内地与香港更紧密经贸关系安排()的签署、中国东盟自由贸易区()的实质性启动、泛珠三角地区经济合作()的出台,广西迎来了千载难
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物流 需求预测

链接地址:https://www.31ppt.com/p-5018672.html