土木工程材料水泥 安徽工业大学本科生课程.ppt
《土木工程材料水泥 安徽工业大学本科生课程.ppt》由会员分享,可在线阅读,更多相关《土木工程材料水泥 安徽工业大学本科生课程.ppt(96页珍藏版)》请在三一办公上搜索。
1、土木工程材料(水泥),安徽工业大学本科生课程,水泥概述,什么是水泥(cement)?水泥是以水化活性矿物为主要成分的水硬性胶凝材料。水泥的种类有哪些?,水泥中的主要矿物,硅酸盐系水泥,铝酸盐系水泥,硫铝酸盐系水泥,磷酸盐系水泥,硫铝酸钙,硅酸钙,铝酸钙,磷酸钙,镁,根据水泥的主要矿物成分,有:硅酸盐系水泥、铝酸盐系水泥、硫铝酸盐系水泥、磷酸盐系水泥等。,什么是水泥(cement)?水泥是以水化活性矿物为主要成分的水硬性胶凝材料。水泥的种类有哪些?,水泥的特性,膨胀水泥,快 硬 水 泥,低 热 水 泥,抗腐蚀水泥,根据水泥的主要矿物成分,有:硅酸盐系水泥、铝酸盐系水泥、硫铝酸盐系水泥、磷酸盐系水
2、泥等。,硬化时膨胀,硬化速度快,水化热低,耐腐蚀性好,根据水泥的特性,有:膨胀水泥、快硬水泥、低热水泥、抗硫酸盐水泥等。,水泥概述,什么是水泥(cement)?水泥是以水化活性矿物为主要成分的水硬性胶凝材料。水泥的种类有哪些?,硅酸盐系水泥,硅酸盐水泥,普通硅酸盐水泥,掺混合材硅酸盐水泥,特性硅酸盐水泥,根据水泥的主要矿物成分,有:硅酸盐系水泥、铝酸盐系水泥、硫铝酸盐系水泥、磷酸盐系水泥等。,根据水泥的特性,有:膨胀水泥、快硬水泥、低热水泥、抗硫酸盐水泥等。,硅酸盐系水泥品种硅酸盐水泥普通硅酸盐水泥;掺混合材的硅酸盐水泥特性硅酸盐水泥,硅酸盐水泥有P和P两类,后者含有混合材。,水泥概述,水泥在
3、土木工程中的重要作用,水泥是当今产量与用量最大的土木工程材料!水泥及其砂浆、混凝土与纤维水泥等水泥基材料普遍用于各种土木工程和钢筋混凝土结构!水泥的性能和正确选用对土木工程的功能与质量至关重要!,硅酸盐水泥的历史,埃及时代 煅烧石膏金字塔希腊与罗马人 发明了煅烧石灰石快硬石灰砖石结构砂浆希腊与罗马人 黏土获泥土、石灰与砂胶凝材料罗马人 用火山灰、石灰与砂水硬性胶凝材料混凝土、砌块中世纪,该项技术失传,到11世纪建材低到最低点14世纪后期,石灰技术和火山灰利用再次升起17591759年,英国人John Smeaton将石灰与火山灰混合胶凝材料;法国的Lesage 和Vicat,英国的Frost
4、和Parke,煅烧石灰与粘土混合物水泥1824年,英国的砖瓦匠Joseph Aspdin发明了现代生产硅酸盐水泥的专利技术1871年,美国宾夕法尼亚,发明世界上第一台回转窑,使水泥生产大规模化,学 习 目 的,学习硅酸盐水泥的矿物组成,及其与其他水泥的差别;水泥的生产过程及其对性质的影响。掌握水泥凝结硬化机理和凝结硬化过程的影响因素;应用这些基本理论,说明水泥和混凝土的性质,指导合理选择与使用水泥,改善水泥基材料的性能。熟悉水泥各种性质的含义和工程意义;水泥性质的影响因素及其规律;水泥性质的检验方法和评定标准。了解水泥的生产工艺。其他品种水泥的性质和应用,主 要 内 容,硅酸盐水泥硅酸盐水泥是
5、怎样制造的?硅酸盐水泥的组成?水泥浆如何转变成坚硬固体?水泥应满足哪些技术性质?掺混合材的硅酸盐水泥其它品种水泥,重点论述硅酸盐系水泥的矿物组成、凝结硬化机理和基本性质及其检测方法,以及硅酸盐水泥的应用。,凡由硅酸盐水泥熟料、05石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为硅酸盐水泥(即国外通称的Portland Cement).分为:P和P,原 料:硅质:粘土,(SiO2、Al2O3),占1/3 钙质:石灰石、白垩等,(CaO),占2/3调节原料:铁矿与砂,调节与补充Fe2O3 与SiO2制造工艺:原料经粉磨混合后得到水泥生料生料经窑内煅烧得到水泥熟料水泥熟料石膏(或再混合材
6、)一起经粉磨混合后得到水泥,“两磨一烧”,水泥生料可以是:与水混合成浆体湿法工艺 加少量水制成料球半干法工艺 加稍多水制成湿球半湿法工艺 干粉混合物干法工艺,硅酸盐水泥的生产,硅质(粘土),钙 质(石灰石),1450,调节原料,石膏,石膏,水 泥,生 料,熟 料,混合材,水泥制造的“两磨一烧”工艺流程,粉 磨,煅 烧,粉 磨,原料采掘,原料磨细,原料混合,反应物产物中间产物,预热器回转窑,产 物,熟料冷却,熟料储存,硅酸盐水泥熟料制造工艺流程,硅酸盐水泥的组成,硅酸盐水泥熟料 Clinkers石膏(CaSO42H2O)Gypsum混合材(矿渣或石灰石粉末)Mineral Additives各物
7、质的作用熟料:主要胶凝物质,能水化硬化;石膏:调节水泥的凝结时间;混合材:调节水泥的强度等级;降低水泥成本,必要组分,熟料又是如何组成的呢?,化学组成:主要成分:CaO(=C),SiO2(=S),Al2O3(=A),Fe2O3(=F)少量杂质:MgO、K2O、Na2O、SO3、P2O5等。矿物组成:硅酸盐水泥熟料主要含有四种矿物:,硅酸盐水泥熟料的组成,水泥颗粒宏观形貌,水泥颗粒的结构,水泥熟料颗粒细观形貌,水泥熟料矿物微观结构,硅酸盐水泥的品种及矿物含量,C3S 48 65 31 42C2S 24 11 40 34C3A 13 8 12 2C4AF 9 9 12 15,特点:普通 早强 低热
8、 抗硫酸盐,A B C D,CaO 66 67 64 64 SiO2 21 21 22 23 Al2O3 7 5 7 4 Fe2O3 3 3 4 5 f-CaO 1 1 1 1 SO3 2 2 2 2,水泥的水化和凝结硬化,水泥浆通过水泥熟料矿物的水化反应、浆体的凝结硬化过程变成坚硬固体,凝结水泥与水混合形成可塑浆体,随着时间推移、可塑性下降,但还不具备强度,此过程即为“凝结”;硬化随后浆体失去可塑性,强度逐渐增长,形成坚硬固体,这个过程即为“硬化”。,水泥浆体转变成坚硬固体的过程是一个复杂的物理化学变化过程。,水泥的水化和凝结硬化,水泥与水能发生化学反应水化反应;水化反应将结合占水泥质量30
9、左右的拌和水;水化反应的产物水化物能相互凝聚成三向网络结构很大的表面能,而且相互间有很强的次价键力。化学过程水泥熟料矿物的水化反应物理过程水泥浆的凝结硬化水泥浆凝结硬化的影响因素硬化水泥浆的组成与结构,水泥熟料矿物的水化反应,特征:水泥熟料颗粒中的四种主要矿物同时进行水化反应;其水化反应均是放热反应;水化反应是固液异相反应。反应速度序列:半水石膏CaSO40.5H2O和游离氧化钙f-CaO的水化铝酸三钙C3A的水化铁铝酸四钙C4AF的水化硅酸三钙C3S的水化硅酸二钙-C2S的水化,来自水泥粉磨过程中二水石膏的脱水分解:CaSO42H2O CaSO40.5H2O+1.5H2O,C3S与-C2S的
10、水化,水化生成水化硅酸钙C3S2H3C-S-H凝胶和Ca(OH)2,并放热 硅酸三钙:2C3S+6H C3S2H3+3CH+120cal/g 硅酸二钙:2C2S+4H C3S2H3+CH+62cal/g(C-S-H)+羟钙石特征:形成相同的水化物组成不确定的C-S-H凝胶,组成为:CaxH6-2xSi2O7.zCa(OH)2nH2O(x,z与温度、水灰比有关)其中钙硅比(C/S):CaO/SiO2=(xz)/2 C3S反应速度比C2S快,其放热量比C2S大。水化机理溶液中反应固相颗粒表面的局部反应。,水化度,水化时间(天),溶液中的反应,机理:溶解 扩散 沉淀,离子在水中的扩散,C3S,表面离
11、子水化弱化晶体中的化学键,增加pH值,水化产物成核,CSH析出、凝聚、脱水离开水相,形成凝胶,CH结晶生长,表面局部反应,机理:颗粒表面水化物层的形成与扩散,水化物层在固液界面上形成,并不断增厚,颗粒表面离子的水化和水解,C-S-H的成核,Ca(OH)2的成核和生长,CSH凝胶体结构,水化硅酸钙的形成,重新排列和凝聚后的凝胶体结构,硅酸钙矿物颗粒的电镜照片,硅酸钙矿物水化后的电镜照片,硅酸钙矿物水化物的特征,硅酸钙的水化产物C-S-H与Ca(OH),铝酸三钙C3A的水化,铝酸钙C3A的水化行为在水泥水化早期特别重要纯C3A与水反应迅速,生产水化铝酸钙:C3A+18H2O C2AH8+C4AH1
12、3 C3AH6(不稳定的中间产物)(稳定产物)这一反应导致水泥浆闪凝或假凝,必须避免!避免闪凝的有效途径加入石膏CaSO42H2O,这就是硅酸盐水泥生产中,必须加入石膏与水泥熟料一起粉磨的根本原因!这一发明是硅酸盐水泥发展史上的一个里程碑。,铝酸三钙C3A在石膏存在下的水化反应,石膏可与C3A的水化产物C3AH6反应形成三硫型硫铝酸钙钙矾石晶体,并放出大量热:C3AH6+3CH2+20H C3A3C3H32+300 cal/g(1)(钙钒石)反应后期,石膏量不足时,水化生成单硫型硫铝酸钙水化物:C3A+C3A3C3H32+4H C3AC3H12(2)石膏消耗完后,C3A直接水化形成C3AH6:
13、C3A+18H2O C3AH6(结合强度最低)(3),石膏缓凝机理:钙钒石的形成反应(1)速度比纯C3A的反应(3)慢;在水泥颗粒表面析出钙矾石晶体构成阻碍层,延缓了水泥颗粒的水化,避免闪凝或假凝。,铁铝酸四钙C4AF的水化,铁铝酸四钙C4AF与水发生类似于C3A的水化反应,也形成类似的产物钙钒石和单硫型水化物:C4AF+7H C3AFH6 CFH C4AF+3CH2+26H C3(A,F)3C3H32 C4AF+CH2+20H C3(A,F)C3H16C4AF水化物的组成是可变的,属于铝酸盐与铁酸盐的固溶体,并由铁相凝胶产生。C4AF的水化反应对整个水泥的行为影响较小。,Summary,硅酸
14、钙的水化2C3S+6H C3S2H3+3CH+120cal/g2C2S+4H C3S2H3+CH+62cal/g C-S-H+羟钙石铝酸钙的水化C3A+18H2O C2AH8+C4AH13 C3AH6C3AH6+3CH2+20H C3A3C3H32(钙钒石)C3A+C3A3C3H32+4H C3AC3H12铁铝酸钙的水化C4AF+13H C4(A,F)H13 C4AF+3CH2+26H C3(A,F)3C3H32 C4AF+CH2+26H C3(A,F)C3H12,水泥的水化过程:当水泥颗粒分散在水中,石膏和熟料矿物溶解进入溶液中,液相被各种离子饱和;几分钟内,Ca2、SO4、Al3、OH离子
15、间反应,形成钙钒石;几小时后,Ca(OH)2晶体和硅酸钙水化物C-S-H开始填充原来由水占据、并溶解熟料矿物的空间;几天后,因石膏量不足,钙钒石开始分解,单硫型硫铝酸钙水化物开始形成。此后,水化物不断形成,不断填充孔隙或空隙。石膏的作用:避免水泥浆的闪凝和假凝现象;导致钙钒石和单硫型硫铝酸钙水化物的形成。,水 泥,水,溶 解,沉 淀,水泥浆的凝结硬化过程,扩 散,水泥浆的凝结硬化物理过程,单一水泥颗粒在大量水中的水化过程模型,新拌,1小时后,数小时后,几天后,几周后,拌合水,未水化的核,水化物CSH,Ca(OH)2晶体,水泥颗粒,水,水泥颗粒分散在水中形成水泥浆体,硅酸盐水泥水化物理过程模型,
16、水泥水化物膜层,水泥颗粒的水化从表面开始,在表面形成水化物膜层诱导期,水化物膜层随水化时间向内不断增厚,进入潜伏期。,在渗透压的作用下,膜层破裂、扩展,占据原来被水占据的空间,进入凝结期。,凝结期:水化物不断填充被水占据的空间,成为连续相,拌和水不断减少,并被水化物分割成非连续相。,随着水泥颗粒的不断水化,水化物不断填充毛细孔和水所占据的空间,固体相成为连续相,并具有一定强度。进入硬化期。,先在固液界面发生,水化物围绕每颗水泥颗粒未水化的内核区域沉积;早期水化物在颗粒上形成表面膜层,阻碍了进一步反应进入潜伏期;因渗透压或Ca(OH)2的结晶或二者,水化物膜层破裂,导致水化继续迅速进行进入水化的
17、加速期;随着水化的不断进行,水占据的空间越来越少,水化物越来越多,水化物颗粒逐渐接近,构成较疏松的空间网状结构,水泥浆失去流动性,可塑性降低凝结;由于水泥内核的继续水化,水化物不断填充结构网中的毛细孔隙,使之越来越致密,空隙越来越少,水化物颗粒间作用增强,导致浆体完全失去可塑性,并产生强度硬化。,水泥浆凝结硬化的物理过程,熟料矿物水化物量随时间的增长情况,随着水泥的水化,水化产物量不断增加,水化物固相所占据的空间越来越多,而原来由水占据的空间越来越少,固体连续相逐渐形成。,初始放热峰,放热主峰,放热速度逐渐减慢,实测的水泥水化放热全曲线,放热速度很低,水灰比0.55的水泥浆水化1天黑色箭头指示
18、部分水化物壳层;白色箭头指示完全水化物壳层。,水泥浆凝结硬化过程的微观观察,a:C3S,b:C2S,水灰比0.55的水泥浆水化9个月I,:C-S-H内产物相;A:铁相/CH;B:水化 belite;白色箭头指示完全水化物壳层,水泥浆中氢氧化钙的生长,3 天,7 天,28 天,365 天,应用水泥凝结硬化机理分析与解答问题,水泥生产中为什么掺加石膏?C3A在水中溶解度大,反应很快,引起水泥浆闪凝;水泥的凝结速度取决于水泥浆体中水化物凝胶微粒的聚集,Al3对凝胶微粒聚集有促进作用;石膏与C3A反应形成难溶的硫铝酸钙水化物,反应速度减缓,并减少了溶液中的Al3浓度,延缓了水泥浆的凝结速度。为什么水泥
19、硬化后能产生强度?水泥浆体硬化后转变为越来越致密的固体;在浆体硬化过程中,随着水泥矿物的水化,比表面较大的水化物颗粒不断增多,颗粒间相互作用力不断增强,产生的强度越来越高。,水泥浆体强度的增长规律是什么?水泥浆体的强度随龄期而逐渐增长,早期增长快,后期增长较慢,但是只要维持一定的温度和湿度,其强度可在相当长的时期内增长。这与水泥矿物的水化反应规律是一致的。为什么强度发展与环境温、湿度有关?水泥的水化需要水,如果没有水,水泥的水化就将停止;提高温度可加快水泥的凝结硬化,而降低温度就会减缓水泥的凝结硬化。为什么水泥的储存与运输时应防止受潮?水泥受潮,因表面水化结块,丧失凝胶能力,强度大为降低。,应
20、用水泥凝结硬化机理分析与解答问题,(1)水泥矿物组成(2)水泥细度(3)养护条件(温度、湿度)与时间(4)拌合用水量(5)水泥中的混合材(6)水泥外加剂,水泥凝结硬化的主要影响因素,水泥浆的凝结硬化取决于水泥的水化,水泥水化速度是矿物组成及其含量、粉磨细度、温度和水灰比的函数:R(t)=f(C3S)f(细度)f(T)f(W/C),水泥熟料中单一矿物的水化速度,水化度(),时间(天),水泥熟料矿物组成的影响,水泥熟料矿物的水化速度:C3A C3ACaSO42H2O C3S C4AF C2S水泥的C3A和C3S含量越高,凝结硬化速度越快;水泥的C3A和C3S含量越低,凝结硬化速度越慢;,石膏掺量的
21、影响,石膏主要降低C3A的水化速度;掺量太少,凝结较快;过多,凝结硬化影响不大。,石膏掺量对C3A浆体(水/固比1.0)水化速度(放热量)的影响,放热速度(W/kg),试时间(h),石膏掺量增加:放热速度减慢 放热峰延后,石膏掺量对C3A与硅酸钙浆体初凝时间的影响,石膏掺量增加,凝结硬化加快;掺量达到一定后,再增加,影响不大。,水泥颗粒细度的影响,水泥颗粒越细,水化速度越快,为什么?,答:水泥的水化反应是液固异相反应,反应首先发生在液固界面上;水泥颗粒越细,比表面积越大,界面区越大,反应点越多,因此水化速度越快。,比表面积 m2/kg,放热速度,时间/小时,细度(比表面积)对C3S浆体(水/固
22、比1.0)水化速度(放热量)的影响,水泥浆比表面积与水化度随时间的关系,水化度(%),比表面积(m2/cm3),水泥细度Fineness of Cement,粒径:90 m 几乎接近惰性。,温度与湿度的影响,温度升高,水化反应加快,凝结硬化加速,为什么?温度升高10C,速度加快一倍。温度低于0C时,水化反应基本停止。保持一定湿度,有利于水泥的水化。,温度升高,放热速度加快,诱导期时间缩短,拌和用水量的影响,重要概念:水灰比水泥浆体中拌和水量与水泥质量之比(W/C);水泥熟料矿物完全水化的理论水灰比0.23;水灰比越大,需要水化物固相填充的孔隙越多,凝结硬化所需时间越长;水灰比越大,水泥石中孔隙
23、越多,强度越低。,未水化水泥,毛细孔,水泥凝胶,体积比,水灰比,长时间放置在水中的水泥浆体水化最终生成物,Summary,C3S、C3A含量多,凝结硬化快,反之亦然。掺加混合材,熟料减少,凝结硬化速度减慢。有些化合物可以使水泥浆体促凝或缓凝。细度越小,水化反应越快,凝结硬化越快。水灰比越大,浆体需填充的孔隙越多,凝结硬化速度越慢。提高温度,加快水泥的凝结硬化;保持足够的水分有利于水泥的凝结硬化,问题?,水泥凝结硬化速度快,有什么不利影响?,答:水化加快,放热速率加速,升温并膨胀,凝结硬化形成的微结构体积较疏松,且在随后的降温期间,或受干燥环境作用收缩变形时产生大量微裂缝,致使结构混凝土强度与渗
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 土木工程材料水泥 安徽工业大学本科生课程 土木工程 材料 水泥 安徽 工业大学 本科生 课程
链接地址:https://www.31ppt.com/p-5017297.html