理论力学-达朗贝尔原理.ppt
《理论力学-达朗贝尔原理.ppt》由会员分享,可在线阅读,更多相关《理论力学-达朗贝尔原理.ppt(103页珍藏版)》请在三一办公上搜索。
1、西北工业大学支希哲 朱西平 侯美丽,动 力 学,达朗贝尔原理,55 消除附加动压力的条件 动平衡和静平衡,54 定轴转动刚体对轴承的动压力,53 动静法应用举例,52 惯性力系的简化,5 1 达朗贝尔原理,第五章达朗贝尔 原理,目录,动 力 学,引进惯性力的概念,将动力学系统的二阶运动量表示为惯性力,进而应用静力学方法研究动力学问题 达朗贝尔原理。,达朗贝尔原理为解决非自由质点系的动力学问题提供了 有别于动力学普遍定理的另外一类方法。,达朗贝尔原理一方面广泛应用于刚体动力学求解动约束力;另一方面又普遍应用于弹性杆件求解动应力。,第五章 达朗贝尔原理,引 言,工程实际问题,第五章 达朗贝尔原理,
2、爆破时烟囱怎样倒塌,工程实际问题,第五章 达朗贝尔原理,爆破时烟囱怎样倒塌,工程实际问题,第五章 达朗贝尔原理,车底盘距路面的高度为什么不同?,第五章 达朗贝尔原理,舰载飞机降落过程中的动力学问题,拦阻装置为什么装在飞机的后部?,第五章 达朗贝尔原理,质点达朗贝尔原理,质点系达朗贝尔原理,5-1 达朗贝尔原理,A,B,M,该质点的动力学基本方程为,设质量为m的非自由质点M,在主动力F和约束力FN作用下沿曲线运动,,F*,F,FN,或,引入质点的惯性力F*=ma 这一概念,于是上式可改写成,上式表明,在质点运动的每一瞬时,作用于质点的主动力、约束力和质点的惯性力在形式上构成一平衡力系。这就是质点
3、的达朗伯原理。,5-2 达朗贝尔原理,一、质点达朗伯原理,质点达朗贝尔原理的投影形式,质点达朗贝尔原理,质点达朗贝尔原理,5-2 达朗贝尔原理,这表明,在质点系运动的任一瞬时,作用于每一质点上的主动力、约束力和该质点的惯性力在形式上构成一平衡力系。,上述质点的达朗贝尔原理可以直接推广到质点系。将达朗贝尔原理应用于每个质点,得到n个矢量平衡方程。,这就是质点系的达朗贝尔原理。,5-2 达朗贝尔原理,二、质点系达朗贝尔原理,对于所讨论的质点系,有n个形式如上式的平衡方程,即有n个形式上的平衡力系。将其中任何几个平衡力系合在一起,所构成的任意力系仍然是平衡力系。根据静力学中空间任意力系的平衡条件,有
4、,质点系达朗贝尔原理,5-2 达朗贝尔原理,考虑到上式中的求和可以对质点系中任何一部分进行,而不限于对整个质点系,因此,该式并不表示仅有6个平衡方程,而是共有3n个独立的平衡方程。同时注意,在求和过程中所有内力都将自动消去。,上式表明,在任意瞬时,作用于质点系的主动力、约束力和该点的惯性力所构成力系的主矢等于零,该力系对任一点O的主矩也等于零。,达朗伯原理提供了按静力学平衡方程的形式给出质点系动力学方程的方法,这种方法称为动静法。这些方程也称为动态平衡方程。,质点系达朗贝尔原理,5-2 达朗贝尔原理,5-2 惯性力系的简化,惯性力系的简化,刚体常见运动情况下惯性力的主矢和主矩,由质心运动定理有
5、 F=maC,得,对于作任意运动的质点系,把实际所受的力和虚加惯性力各自向任意点O简化后所得的主矢、主矩分别记作F,MO 和F*,M*O,于是,由力系平衡条件,可得,即,质点系惯性力的主矢恒等于质点系总质量与质心加速度的乘积,而取相反方向。,一、惯性力系的简化,1.惯性力系的主矢,5-2 惯性力系的简化,由对任意固定点O的动量矩定理有,,现将上式两端投影到任一固定轴Oz上,,上式表明:质点系的惯性力对于任一固定点(或固定轴)的主矩,等于质点系对于该点(或该轴)的动量矩对时间的导数,并冠以负号。,2.惯性力系的主矩,代入,得,对任意固定点,对固定轴,5-2 惯性力系的简化,上式表明:质点系的惯性
6、力对质心(或通过质心的平动轴)的主矩,等于质点系对质心(或该轴)的动量矩对时间的导数,并冠以负号。,利用相对于质心的动量矩定理,可以得到质点系的惯性力对质心C的主矩表达式,惯性力系的主矩,对质心点,对质心轴,5-2 惯性力系的简化,惯性力系的主矩,惯性力系的主矩与刚体的运动形式有关。,惯性力系的主矢与刚体的运动形式无关。,注 意,5-2 惯性力系的简化,1.刚体作平动,刚体平移时,惯性力系简化为通过刚体质心的合力。,刚体平移时,惯性力系向质心简化,主矢,主矩,5-2 惯性力系的简化,二、刚体常见运动情况下惯性力的主矢和主矩,O,C,z,y,x,2.刚体做定轴转动,设刚体绕固定轴Oz转动,在任意
7、瞬时的角速度为,角加速度为。,主矢,具有质量对称平面的刚体绕垂直于对称平面的固定轴转动。,设质心C的转动半径为rC,则 和 的大小可分别表示为,刚体做定轴转动,5-2 惯性力系的简化,显然,当质心C在转轴上时,刚体的惯性力主矢必为零。,其中,刚体做定轴转动,5-2 惯性力系的简化,主矢,具有质量对称平面的刚体绕垂直于质量对称平面的固定轴转动时,惯性力系向固定轴简化,得到的惯性力系主矢的大小等于刚体质量与质心加速度大小的乘积,方向与质心加速度方向相反。,刚体做定轴转动,5-2 惯性力系的简化,O,C,z,y,x,O,C,z,y,x,即,对转轴的主矩,将刚体对转轴Oz的动量矩 代入 可得刚体惯性力
8、对轴Oz的主矩,刚体做定轴转动,5-2 惯性力系的简化,具有质量对称平面的刚体绕垂直于质量对称平面的固定轴转动时,惯性力系向固定轴简化的结果,得到合力偶的力偶矩即为惯性力系的主矩,其大小等于刚体对转动轴的转动惯量与角加速度的乘积,方向与角加速度方向相反。,刚体做定轴转动,对转轴的主矩,5-2 惯性力系的简化,主矢,对转轴的主矩,合力的矢量即为惯性力系的主矢,其大小等于刚体质量与质心加速度大小的乘积,方向与质心加速度方向相反。,具有质量对称平面的刚体绕垂直于质量对称平面的固定轴转动时,惯性力系向固定轴简化的结果,得到一个合力和一个合力偶。,合力偶的力偶矩即为惯性力系的主矩,其大小等于刚体对转动轴
9、的转动惯量与角加速度的乘积,方向与角加速度方向相反。,刚体做定轴转动,O,C,M*z,5-2 惯性力系的简化,3.刚体作平面运动,具有质量对称平面的刚体作平面运动,并且运动平面与质量对称平面互相平行。对于这种情形,先将刚体的空间惯性力系向质量对称平面内简化,得到这一平面内的平面惯性力系,然后再对平面惯性力系作进一步简化。,5-2 惯性力系的简化,3.刚体作平面运动,若取质心C为基点,则刚体的平面运动可以分解为随质心C的平动和绕质心(通过质心且垂直于运动平面的轴)的转动。,刚体上各质点的加速度及相应的惯性力也可以分解为随质心的平动和绕质心轴的转动两部分。,于是,此刚体的牵连平动惯性力可合成为作用
10、线通过质心、且在对称面内的一个力F*。,因质心C在相对运动的转轴上,故刚体的相对转动的惯性力合成为一力偶。,5-2 惯性力系的简化,具有质量对称平面的刚体作平面运动,并且运动平面与质量对称平面互相平行。这种情形下,惯性力系向质心简化的结果得到一个合力和一个合力偶,二者都位于质量对称平面内。,合力的矢量即为惯性力系的主矢,其大小等于刚体质量与质心加速度大小的乘积,方向与质心加速度方向相反。,主矢,5-2 惯性力系的简化,合力偶的力偶矩即为惯性力系的主矩,其大小等于刚体对通过质心的转动轴的转动惯量与角加速度的乘积,方向与角加速度方向相反。,主矩,5-2 惯性力系的简化,综上所述:,5-2 惯性力系
11、的简化,5-3 动静法应用举例,例题 5-1 汽车连同货物的总质量是m,其质心 C 离前后轮的水平距离分别是 b 和 c,离地面的高度是 h。当汽车以加速度a沿水平道路行驶时,求地面给前、后轮的铅直反力。轮子的质量不计。,A,B,C,c,b,h,5-3 动静法应用举例,例题 5-1,取汽车连同货物为研究对象。汽车实际受到的外力有:重力 G,地面对前、后轮的铅直反力 FNA、FNB 以及水平摩擦力 FB(注意:前轮一般是被动轮,当忽略轮子质量时,其摩擦力可以不计)。,解:,因汽车作平动,其惯性力系合成为作用在质心 C 上的一个力 F*=ma。,A,B,C,c,b,h,a,FB,mg,FNA,FN
12、B,例题 5-1,5-3 动静法应用举例,于是可写出汽车的动态平衡方程,由式(1)和(2)解得,例题 5-1,5-3 动静法应用举例,A,B,C,c,b,h,a,FB,mg,FNA,FNB,无ABS系统时,刹车会产生侧滑现象,5-3 动静法应用举例,汽车刹车时,前轮和后轮哪个容易“抱死”?,车轮防抱死装置ABS:Anti-Brake System,5-3 动静法应用举例,思考题,分析汽车刹车时的动力学特性,刹车时的动力学特性:车头下沉;若质心在中间,后轮容易打滑。,A,B,底盘可升降的轿车,5-3 动静法应用举例,例题5-2 如图所示,匀质滑轮的半径为r,质量为m,可绕水平轴转动。轮缘上跨过的
13、软绳的两端各挂质量为m1和m2的重物,且m1 m2。绳的重量不计,绳与滑轮之间无相对滑动,轴承摩擦忽略不计。求重物的加速度和轴承反力。,O,A,B,r,O,5-3 动静法应用举例,例题 5-2,5-3 动静法应用举例,例题 5-2,以滑轮与两重物一起组成所研究的质点系。作用在该系统上的外力有重力m1g,m2g,mg和轴承约束反力FN。,O,A,B,r,y,解:,已知m1m2,则重物的加速度a方向如图所示。,在系统中每个质点上假想地加上惯性力后,可以应用达郎伯原理。,重物的惯性力方向均与加速度a的方向相反,大小分别为:,O,5-3 动静法应用举例,例题 5-2,滑轮定轴转动,惯性力向转轴O简化。
14、,应用达朗贝尔原理列平衡方程,得,主矢 F*=maO=0,主矩 M*O=JO=,5-3 动静法应用举例,例题 5-2,解得,5-3 动静法应用举例,例题 5-2,例题5-3飞轮质量为m,半径为R,以匀角速度转动。设轮缘较薄,质量均匀分布,轮辐质量不计。若不考虑重力的影响,求轮缘横截面的张力。,例题 5-3,5-3 动静法应用举例,例题 5-3,取四分之一轮缘为研究对象,如图所示。将轮缘分成无数微小的弧段,每段加惯性力,建立平衡方程,令,有,x,y,R,A,B,O,FA,FB,解:,5-3 动静法应用举例,例题 5-3,由于轮缘质量均分布,任一截面张力都相同。,再建立平衡方程,同样解得,x,y,
15、R,A,B,O,FA,FB,5-3 动静法应用举例,例题 5-3,x,y,O,C,A,a,M,W1,F,W,例题5-4 车辆的主动轮如图所示。设轮的半径为r,重为W1(W1=mg),在水平直线轨道上运动。车身对轮子的作用力可分解为W和F,驱动力偶矩为M。车轮对通过其质心并垂直于车轮对称面的轴的回转半径为C,轮与轨道间的滑动摩擦系数为fs,不计滚动摩阻的影响。求在不滑动条件下,驱动力偶矩M的最大值。,5-3 动静法应用举例,例题 5-4,例题 5-4,惯性力系:因车轮作平面运动,设车身有向前的加速度a,则惯性力系向质心C简化的主矢量F*和主矩M*C为:,分析车轮的受力情况如下。主动力系:车身的载
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理论 力学 达朗贝尔 原理
链接地址:https://www.31ppt.com/p-5012520.html