一次与反比综合练习.doc
《一次与反比综合练习.doc》由会员分享,可在线阅读,更多相关《一次与反比综合练习.doc(38页珍藏版)》请在三一办公上搜索。
1、一次函数基本题型题型一、点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A(m,n)在第二象限,则点(|m|,-n)在第_象限;2、 若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为_;3、 已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_,b=_;若A,B关于y轴对称,则a=_,b=_;若若A,B关于原点对称,则a=_,b=_;4、 若点M(1-x,1-y)
2、在第二象限,那么点N(1-x,y-1)关于原点的对称点在第_象限。题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示; 任意两点的距离为; 若ABx轴,则的距离为; 若ABy轴,则的距离为; 点到原点之间的距离为1、 点B(2,-2)到x轴的距离是_;到y轴的距离是_;2、 点C(0,-5)到x轴的距离是_;到y轴的距离是_;到原点的距离是_;3、 点D(a,b)到x轴的距离是_;到y轴的距离是_;到原点的距离是_;4、 已知点P(3,0),Q(-2,0),则PQ=_,已知点,则MQ=_; ,则EF两点之间的距离是_;已知点G(2,-3)、H
3、(3,4),则G、H两点之间的距离是_;5、 两点(3,-4)、(5,a)间的距离是2,则a的值为_;6、 已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且ACB=90,则C点坐标为_.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b是常数,k0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。A与B成正比例A=kB(k0)1、当k_时,是一次函数;2、当m_时,是一次函数;3、当m_时,是一次函数;4、2y-3与3x+1成正比例,且x
4、=2,y=12,则函数解析式为_;题型四、函数图像及其性质方法:函数图象性质经过象限变化规律y=kx+b(k、b为常数,且k0)k0b0b=0b0k0b0b=0b0一次函数y=kx+b(k0)中k、b的意义: k(称为斜率)表示直线y=kx+b(k0)的倾斜程度;b(称为截距)表示直线y=kx+b(k0)与y轴交点的 ,也表示直线在y轴上的 。 同一平面内,不重合的两直线 y=k1x+b1(k10)与 y=k2x+b2(k20)的位置关系:当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y轴上同一点。 特殊直线方程: X轴 : 直线 Y轴 : 直线 与X轴平
5、行的直线 与Y轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y5x+6,y的值随x值的减小而_。2、对于函数, y的值随x值的_而增大。 3、一次函数 y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。4、直线y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_象限。6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第_象限。7、已知一次函数 (1)当m取何值时,y随x的增大而减小? (2)当m取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依
6、据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k0)的解析式。 已知是直线或一次函数可以设y=kx+b(k0); 若点在直线上,则可以将点的坐标代入解析式构建方程。1、若函数y=3x+b经过点(2,-6),求函数的解析式。2、直线y=kx+b的图像经过A(3,4)和点B(2,7),3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。5、若一次函数y=kx+b的自变量x的取值范围是-2x6,相应的函
7、数值的范围是-11y9,求此函数的解析式。6、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。7、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。8、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。题型六、平移方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。直线y=kx+b向左平移2向上平移3 y=k(x+2)+b+3;(“左加右减,上加下减”)。1. 直线y=5x-3向左平移2个单位得到直线 。2. 直线y=-x-2向右平移2个单
8、位得到直线 3. 直线y=x向右平移2个单位得到直线 4. 直线y=向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线 7. 直线向上平移1个单位,再向右平移1个单位得到直线 。8. 直线向下平移2个单位,再向左平移1个单位得到直线_。9. 过点(2,-3)且平行于直线y=2x的直线是_ _。10. 过点(2,-3)且平行于直线y=-3x+1的直线是_.11把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是_;12直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2
9、a,7)在直线n上,则a=_;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。2、 已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB(1) 求两个函数的解析式;(2)求AOB的面积;3、 已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标
10、是-3,它和x轴、y轴的交点是D、C;(1) 分别写出两条直线解析式,并画草图;(2) 计算四边形ABCD的面积;(3) 若直线AB与DC交于点E,求BCE的面积。4、 如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,AOP的面积为6;(1) 求COP的面积;(2) 求点A的坐标及p的值;(3) 若BOP与DOP的面积相等,求直线BD的函数解析式。5、已知:经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D (1)求直线的解析式; (2)若直线
11、与交于点P,求的值。6. 如图,已知点A(2,4),B(-2,2),C(4,0),求ABC的面积。反比例函数知识点总结反比例函数的定义一般地,形如(k为常数,)的函数称为反比例函数,它可以从以下几个方面来理解:x是自变量,y是x的反比例函数;自变量x的取值范围是的一切实数,函数值的取值范围是;比例系数是反比例函数定义的一个重要组成部分;反比例函数有三种表达式:(),(),(定值)();函数()与()是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。用待定系数法求反比例函数的解析式由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式
12、。反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量,函数值,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。反比例的画法分三个步骤:列表;描点;连线。再作反比例函数的图像时应注意以下几点:列表时选取的数值宜对称选取;列表时选取的数值越多,画的图像越精确;连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。反比例函数的性质关于反比例函数的性质,主要研究它的
13、图像的位置及函数值的增减情况,如下表:反比例函数()的符号图像性质的取值范围是,y的取值范围是当时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。的取值范围是,y的取值范围是当时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。注意:描述函数值的增减情况时,必须指出“在每个象限内”否则,笼统地说,当时,y随x的增大而减小“,就会与事实不符的矛盾。反比例函数图像的位置和函数的增减性,是有反比例函数系数k的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k的符号。如在第一、第三象限,则可知。反比例函数()中比例系
14、数k的绝对值的几何意义。如图所示,过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,E、F分别为垂足,则 反比例函数()中,越大,双曲线越远离坐标原点;越小,双曲线越靠近坐标原点。 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=x。反比例函数知识点训练一.反比例函数的定义:.1.下列函数中,是的反比例函数的是 ( )A. B. C. D. 2.若函数是反比例函数,则的值是 ( ) A. 1 B. -1 C. 1 D. 24.若双曲线经过点,则的值是 .5.点、均在函数的图象上,若,则 .二.待定系数法求解析式:1.一个反比例函数的图象经过点,则其
15、函数关系式是 .2.已知:与成反比例,且当时,那么当时,等于 ( ).A. 0.5 B.2 C. -2 D.-13.已知:,与成反比例,与成正比例,且当时;当时,求时的值.4.已知反比例函数的图象经过点.(1)这个函数的图象分布在哪几个象限内? 随的增大如何变化?(2)请判断、是否在这个函数的图象上.三.反比例函数的图象性质:(1)反比例函数图象的对称性:1.已知反比例函数的图象在第二、四象限,那么一次函数的图象经过( )象限.A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四2.反比例函数的图象关于轴对称的反比例函数为 3.对于反比例函数,下列说法不正确的是 ( )A.在每个象限
16、内y值随x值的增大而减小;B.当x小于零时,图象分布在第三象限;C.图象一定经过点(-2,-6); D.其图象依次经过第二、第四象限(2)反比例系数的几何意义:1.如图,点A、B是函数()图象上的两点,分别过点A、B作轴的垂线,垂足分别是C、D,已知点O是坐标原点,则AOC、BOD的面积S1、S2的大小关系是( ) A.S1S2 B.S1=S2 C.S1S2 D.S1S22.A、C是函数的图象上任意两点,过A作x轴的垂线交x轴于B,过C作y轴的垂线交y轴于D,记RtAOB的面积为S1,RtCOD的面积为S2,则( )A.S1S2 B.S1S2C.S1=S2 D.S1和S2的大小关系不能确定3.
17、A、B是函数的图象上关于原点对称的任意两点,ACy轴,交x轴于点C,BDy轴,交x轴于点D,设四边形ADBC的面积为S,则( )A.S=1 B.S=2C.1S2 D.S24.两个反比例函数,在第一象限内的图象如图所示,点P1,P2,P3,P2005在反比例函数图象上,它们的横坐标分别是x1,x2,x3,x2005,纵坐标分别是1,3,5,共2005个连续奇数,过点P1,P2,P3,P2005分别作y轴的平行线,与的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),Q2005(x2005,y2005),则y2005等于( )A.2004.5 B.2003.5 C.2004
18、 D.20055.如图,直线与双曲线交于点A,与轴、轴分别交于点B、C,AD轴于点D,如果SADB=SCOB,那么=_.6、如图,梯形AOBC的顶点A、C在反比例函数图象上,OABC,上底边OA在直线y = x上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为( ) A3 B C D7、已知,如图,动点P在函数的图象上运动,PMx轴于点M,PNy轴于点N,线段PM、PN分别与直线相交于点E,F,则AFBE的值是( ) A4 B2 C1 D(3)反比例函数的增减性:1.已知反比例函数 (),当时,值随值的增大而减小,则一次函数的图象一定不经过第_象限.2.已知反比例函数的图象上有两点A
19、(x1,y1)和B(x2,y2),且x1y2 B.y1=y2 C.y1y2 D.不能确定y1与y2的大小关系3.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数的图象上的点,并且x10x2x3,则下列各式中正确的是( )A.y1y2y3 B.y2y3 y2y3 D.y1y3y2y3 B.y2y1y3 C.y3y1y2 D.y3y2y1 5.在函数(为常数,且)的图象的一支在第四象限.(1)图象的另一支在第几象限? 你能求出符合题意的k的取值范围吗?(2)图象上有三点(-1,y1)、,你会比较y1、y2、y3的大小吗?(4)双曲线与直线的研究:1.函数与在同一坐标系中的大致图象可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 反比 综合 练习
链接地址:https://www.31ppt.com/p-4991428.html