反函数、复合函数的求导法则.ppt
《反函数、复合函数的求导法则.ppt》由会员分享,可在线阅读,更多相关《反函数、复合函数的求导法则.ppt(16页珍藏版)》请在三一办公上搜索。
1、一、反函数的导数,二、复合函数的求导法则,基本初等函数的导数公式小结,三、求导法则小结,2.3 反函数、复合函数的求导法则,上页,下页,结束,返回,首页,一、反函数的导数,如果函数x=j(y)在某区间Iy内单调、可导且j(y)0,那么它的反函数y=f(x)在对应区间Ix内也可导,并且,简要证明:,因为y=f(x)连续,所发当Dx0时,Dy0。,下页,例1求(arcsin x)及(arccos x)。,一、反函数的导数,如果函数x=j(y)在某区间Iy内单调、可导且j(y)0,那么它的反函数y=f(x)在对应区间Ix内也可导,并且,解:,因为y=arcsin x是x=sin y的反函数,所以,下
2、页,例2求(arctan x)及(arccot x)。,一、反函数的导数,如果函数x=j(y)在某区间Iy内单调、可导且j(y)0,那么它的反函数y=f(x)在对应区间Ix内也可导,并且,解:,因为y=arctan x是x=tan y的反函数,所以,下页,(1)(C)=0,(2)(xm)=m xm-1,(3)(sin x)=cos x,(4)(cos x)=-sin x,(5)(tan x)=sec2x,(6)(cot x)=-csc2x,(7)(sec x)=sec x tan x,(8)(csc x)=-csc x cot x,(9)(ax)=ax ln a,(10)(ex)=ex,,基本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反函数 复合 函数 求导 法则
链接地址:https://www.31ppt.com/p-4985653.html