多边形的内角和与外角和.ppt
《多边形的内角和与外角和.ppt》由会员分享,可在线阅读,更多相关《多边形的内角和与外角和.ppt(37页珍藏版)》请在三一办公上搜索。
1、9.2 多边形的内角和与外角和,鹤壁四中初一数学组,目录,1.多边形的定义,2.正多边形的定义,3.多边形的对角线,4.多边形的内角和,5.多边形的外角和,试一试,三角形有三个内角、三条边,我们也可以把三角形称为三边形(但我们习惯称为三角形),你能说出三角形的定义吗?,三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,既然我们已经知道什么叫三角形,你能根据三角形的定义,说出什么叫四边形吗?,四边形是由四条不在同一直线上的线段首尾顺次连结组成的平面图形,记为四边形ABCD,什么叫五边形?,五边形,它是由五条不在同一直线上的线段首尾顺次连结组成的平面图形,记为五边形ABCDE,一般地
2、,由n条不在同一直线上的线段首尾顺次连结组成的平面图形称为n边形,又称为多边形,那么多边形的定义呢?,下面所示的图形也是多边形,但不在我们现在研究的范围内。,注 意我们现在研究的是如右图所示的多边形,也就是所谓的凸多边形,有什么不同?,凹多边形,凸多边形,1.如图所示,A、D、C、ABC是四边形ABCD的四个内角,3.CBE和ABF都是与ABC相邻的外角,两者互为对顶角,四边形有八个外角。,既然三角形有三个内角、三条边,六个外角,那么四边形有几个内角?几条边?几个外角呢?,2.AB,BC,CD,DA是四边形ABCD的四条边,那么五边形有几个内角?几条边?几个外角呢?,那么六边形有几个内角?几条
3、边?几个外角呢?,那么n边形有几个内角?几条边?几个外角呢?,六边形有6个内角,6条边,12个外角,五边形有5个内角,5条边,10个外角,n边形有n个内角,n条边,2n个外角,请大家细心地填一填,多边形的内角,边,外角三者的关系表,你能发现什么规律?,3,3,4,4,5,5,6,6,7,7,n,n,6,8,10,12,14,2n,三角形如果三条边都相等,三个角也都相等,那么这样的三角形就叫做正三角形。,如果多边形各边都相等,各个角也都相等,那么这样的多边形就叫做正多边形。如正三角形、正四边形(正方形)、正五边形等等。,正三角形,正四边形,正五边形,正六边形,正八边形,(或正三边形),(或正四边
4、形),连结多边形不相邻的两个顶点的线段叫做多边形的对角线.,线段AC是四边形ABCD的一条对角线;多边形的对角线用虚线表示。,试一试,请大家思考:五边形ABCDE共有几条对角线呢?,五边形ABCDE共有5条对角线。,请大家思考:六边形ABCDEF共有几条对角线呢?,试一试,六边形ABCDEF共有9条对角线。,有没有什么规律呢?,请问:四边形从一个顶点出发,能引出几条对角线?,请问:五边形从一个顶点出发,能引出几条对角线?,请问:六边形从一个顶点出发,能引出几条对角线?,请问:N边形从一个顶点出发,能引出几条对角线?,1,2,3,N-3,我们已经知道一个三角形的内角和等于180,那么四边形的内角
5、和等于多少呢?五边形、六边形呢?由此,n边形的内角和等于多少呢?,我们学习数学的基本思想什么?,化未知为已知,那么我们能不能利用三角形的内角和,来求出四边形的内角和,以及五边形、六边形,n边形的内角和?,探索新知,请你认真地想一想,你能通过怎样的方法把多边形转化为三角形?,3,4,5,n-2,540,720,900,180(n-2),1.从一个顶点出发,由此,我们就可以得出:,n边形的内角和为_,(n-2)180,它有什么作用呢?,1.知道多边形的边数,可以求出多边形的度数.,2.知道多边形的度数,可以求出多边形的边数.,例1.求八边形的内角和的度数,解(n2)180=(82)180=1 08
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多边形 内角 外角
链接地址:https://www.31ppt.com/p-4970170.html