医用高等数学第四章课件.ppt
《医用高等数学第四章课件.ppt》由会员分享,可在线阅读,更多相关《医用高等数学第四章课件.ppt(91页珍藏版)》请在三一办公上搜索。
1、第四章 不定积分 Integration,第一节、不定积分的概念和性质第二节、换元积分法和分部积分法第三节、有理式积分法,第一节 不定积分的概念和性质,原函数和不定积分的概念不定积分的几何意义不定积分的性质不定积分的基本公式及线性运算法则,例,定义:,一、原函数与不定积分的概念,原函数存在定理:,简言之:连续函数一定有原函数.,问题:,(1)原函数是否唯一?,例,(为任意常数),(2)若不唯一它们之间有什么联系?,关于原函数的说明:,(1)若,则对于任意常数,,(2)若 和 都是 的原函数,,则,(为任意常数),证,(为任意常数),不定积分的定义:,例1 求,解,解,例2 求,例3 设曲线通过
2、点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.,解,设曲线方程为,根据题意知,由曲线通过点(1,2),所求曲线方程为,几何意义:函数 f(x)的不定积分 是一族积分曲线(在每一条积分曲线上横坐标相同的点x处作切线,切线相互平行,其斜率都是f(x),x,x,y,o,二、不定积分的几何意义,由不定积分的定义,可知,结论:,微分运算与求不定积分的运算是互逆的.,实例,启示,能否根据求导公式得出积分公式?,结论,既然积分运算和微分运算是互逆的,因此可以根据求导公式得出积分公式.,三、基本积分表,基本积分表,是常数);,说明:,例4 求积分,解,根据积分公式(2),例5、求积
3、分,例6、求积分,证,等式成立.,(此性质可推广到有限多个函数之和的情况),三、不定积分的性质,例7 求积分,解,例8 求积分,解,例9 求积分,解,例10 求积分,解,说明:,以上几例中的被积函数都需要进行恒等变形,才能使用基本积分表.,解,所求曲线方程为,基本积分表(1),不定积分的性质,原函数的概念:,不定积分的概念:,求微分与求积分的互逆关系,四、小结,思考题,符号函数,在 内是否存在原函数?为什么?,思考题解答,不存在.,假设有原函数,故假设错误,所以 在 内不存在原函数.,结论,每一个含有第一类间断点的函数都没有原函数.,第二节 换元积分法和分部积分法,一、第一类换元法(“凑”微分
4、法)二、第二类换元法三、分部积分法,问题,?,解决方法,利用复合函数,设置中间变量.,过程,令,一、第一类换元法,在一般情况下:,由此可得换元法定理,第一类换元公式(凑微分法),说明,使用此公式的关键在于将,化为,观察重点不同,所得结论不同.,定理1,例1 求,解(一),解(二),解(三),例2 求,解,一般地,例3 求,解,例4 求,解,例5 求,解,例6 求,解,例7 求,解,例8 求,解,例9 求,原式,例10 求,解,例11 求,解,说明,当被积函数是三角函数相乘时,拆开奇次项去凑微分.,例12 求,解(一),(使用了三角函数恒等变形),解(二),类似地可推出,问题,解决方法,改变中间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医用 高等数学 第四 课件
链接地址:https://www.31ppt.com/p-4968622.html