基于某DSP光伏并网逆变器地硬件电路设计毕业设计.doc
《基于某DSP光伏并网逆变器地硬件电路设计毕业设计.doc》由会员分享,可在线阅读,更多相关《基于某DSP光伏并网逆变器地硬件电路设计毕业设计.doc(46页珍藏版)》请在三一办公上搜索。
1、本科生毕业设计说明书毕业论文题 目:基于DSP的光伏并网逆变器硬件电路的设计学生某某: 学 号:专 业:电气工程与其自动化班 级: 指导教师:基于DSP的光伏并网逆变器硬件电路的设计摘 要由于近年来不可再生能源的不断消耗,能源危机日益凸显,各国都在加紧开发新能源。太阳能发电作为一种全新的电能生产方式,具有清洁无污染、来源永不衰竭且维护措施简单等特点,因而受到越来越广泛的关注。本文针对太阳能应用的一个重要研究领域光伏发电系统,尤其是小功率光伏并网发电系统,设计实现了基于DSP控制的单相光伏并网逆变器的硬件电路。论文首先介绍了太阳能光伏并网的国内外开展现状,阐述了利用DSP控制光伏并网系统的根本原
2、理。然后提出了以逆变器DC/AC变换技术为核心的单相光伏并网逆变器的硬件电路设计方案,并在Matlab软件上进展了仿真测试。最后对后续研究工作进展了展望,为进一步制作电路板与其调试提供了参考。关键词:光伏并网;逆变器;数字信号处理器;Matlab仿真PV Grid-Connected Inverter Hardware Circuit Design Based on DSP AbstractIn recent years, with the continuous consumption of non-renewable energy, the energy crisis has bee inc
3、reasingly prominent, countries are stepping up the pace to develop new energy. Solar power, as a new energy production methods, owns many features, such as, clean, non-polluting, never failure of source and simple maintenance measures, and thus draws more and more attention. In this paper, as for an
4、 important research field of solar energy applications-photovoltaic systems, especially low-power photovoltaic power generation system, the hardware circuit of the DSP-based control of single phase photovoltaic grid-connected inverter is designed and implemented.The paper firstly described the devel
5、opment of solar photovoltaic grid in the world, and explained the basic principles of DSP controlled photovoltaic grid system.Then objective of the single-phase PV grid inverter with the core of DC / AC conversion technology inverter hardware circuit is designed and its simulation tests on the Matla
6、b software is proceeded. Finally, the prospect of follow-up studyprovides a reference for the further production of circuit boards and their debugging.Keywords:grid-connected photovoltaic; inverter; DSP; Matlab simulation目录摘要IAbstractII第一章 绪论1 课题研究的背景、目的和意义1 国内外研究的现状1 国内研究的现状2 国外研究的现状2 本课题研究的主要内容3第二
7、章 太阳能光伏并网的研究4 光伏并网逆变器的拓扑结构设计4 按变压器拓扑结构分类4 按功率变换级数分类6 按控制方式分类7 光伏并网控制策略根本原理10 光伏并网逆变器的控制方式10 光伏并网逆变器的控制目标10 输出电流控制方式11 最大功率点跟踪12 孤岛效应14 孤岛效应的影响和危害14 孤岛效应的检测方法15第三章 基于DSP的并网逆变器硬件电路的设计16 并网逆变器总体结构16 基于DSP的控制系统硬件设计163.2.1 DSP概述173.2.2 DSP系统硬件电路设计18 采样和调理保护电路设计24 主电路设计与关键参数选择283.4.1 Boost电路设计与参数选择28 逆变器电
8、路设计与参数选择31第四章 光伏并网逆变器仿真测试354.1 Boost升压电路仿真测试354.1.1 Matlab搭建电路图35 仿真波形和分析35 逆变器电路仿真测试364.2.1 Matlab搭建电路图37 仿真波形和分析37第五章 总结和展望39 工作总结39 展望39参考文献41附录42附录A DSP控制电路PCB板42附录B 3D模式的控制电路PCB板42附录C 主电路PCB板43附录D 3D模式的主电路PCB板43附录E 总体原理电路图43附录F DSP控制电路原理图43致谢44第一章 绪 论1.1 课题研究的背景、目的和意义当今世界,人类对于能源的依赖性越来越强,能源已经成为我
9、们生活中必需的局部,它为人类的各项活动提供着动力。随着一次能源煤、石油、天然气等不可再生能源的过度开发,以与地球环境的日益恶化全球变暖、酸雨、厄尔尼诺现象等,一系列环境问题危与人类的可持续开展。环境、能源和可持续开展已经成为人类迫切要解决的问题。能源短缺和环境恶化加快了人类去寻找替代能源的进程,各国都在大力开展新能源。在新能源家族中,有风能、太阳能、地热能、潮汐能等。由于太阳能资源分布相对广泛、蕴藏丰富,光伏发电以清洁可再生的太阳能为能源,直接将太阳能转换成电能,是一种不需要燃料、没有污染获取电能的高新技术,因此光伏发电被认为将是21世纪、最具活力的新能源1。过去太阳能光伏发电系统中因为太阳能
10、电池的制造本钱比拟高,所以太阳能光伏发电只能应用于一些偏远地区的供电。例如,一些分散的农牧户、基站的通信设备供电、气象、国防等。而且应用于村庄的大都是小型的光伏发电系统,大多未能并入电网,属于独立的离网式发电。当今太阳能电池硅板本钱有所降低,电力电子技术、自动控制技术、计算机处理技术等也有了飞速开展。太阳能光伏发电系统有了质的飞跃,发电本钱在逐年下降,发电的效率和市场效益也在进一步提高,这为大规模开展太阳能光伏发电并网技术提供了根底。从2004年欧盟联合研究中心预测的世界能源结构大致变化开展趋势2中可以看出,在接下来的近一百年里,石油、煤炭、天然气等不可再生能源在一次能源消费中所占的比例将呈下
11、降趋势,而太阳能光伏发电如此会大比例的增加。所以大力开展太阳能有利于缓解能源危机和解决环境问题,促进人类社会的可持续开展。我国拥有丰富的太阳能资源,所以开展太阳能占有一定的先天优势。从我国所处的地理位置、地形以与纬度来分析,我国中西部地区太阳能资源比拟丰富,某某、某某、某某、某某、某某、某某均属于世界太阳能资源丰富的地区。这些地方又有十分广阔的面积,有利于大规模安置太阳能光伏并网发电设备,也有利于局部地区环境的改善。1.2 国内外研究的现状与独立光伏发电系统相比,光伏并网发电系统具有一些自己的优点。它省掉了体积庞大、价格高昂、不易维护的蓄电池,具有造价低,输出电能稳定的特点,因而具有更为广阔的
12、市场前景。典型的光伏并网逆变器发电系统包括:光伏阵列,直流到直流斩波电路DC-DC,Dclink,直流到交流逆变器DC-AC控制电路,采样电路,保护电路,故障处理电路等。1.2.1 国内研究的现状由于我国在光伏发电等可再生能源发电技术的研究起步相对较晚,光伏发电只在一些尖端领域应用比拟多,核心技术方面和国外还有一定的差距。就光伏并网型逆变器而言,某某工业大学能源研究所、燕山大学、某某交通大学、中国科学院电工研究所等科研单位在这一方面进展了相关的研究,并且在“九五、“十五期间,国家科技部投入相当数额的经费进展开发工作3。目前我国光伏并网逆变器市场开展规模还比拟小,国内生产逆变器的商家虽然很多,但
13、专门用于生产光伏发电系统的逆变器制造厂商却并不多,而且有不少国内制造厂商已经在逆变器方面研究开发多年,已经开展到拥有一定的规模和市场竞争力,但在逆变器技术质量、验证技术上、规模上与国外企业仍有很大差距。目前我国具有较大规模的厂商有索英、某某冠亚、科诺伟业、志诚冠军某某英伟力新能源科技某某等企业。国内市场规模虽然比拟小,核心技术还处在不算成熟的阶段,但未来光伏发电市场的巨大开展潜力和开展空间将给国内光伏企业带来前所未有的开展机遇。目前国内光伏并网逆变器主要被阳光电源、艾思玛、KACO等品牌所占领,而国外的企业多数通过代理渠道进入国内的市场,由于售后服务提供难度大的问题导致其整体市场占有率不高。国
14、内重点光伏发电项目大功率产品几乎全部选用国内产品。从技术层次来说,国内企业在智能化程度、稳定性、转换效率、结构工艺等方面与国外先进水平仍有一定差距。目前我国在小功率逆变器技术上与国外处于同一水平,在大功率并网逆变器上,还有一定的差距,大功率并网逆变器仍需进一步开展和研究。1.2.2 国外研究的现状近几年,随着德国、美国、西班牙、日本对本国光伏发电产业在政策上大力扶持,全球光伏并网逆变器的销售额在逐年上升,光伏并网逆变器进入了一个飞速开展的阶段。但目前全球光伏并网逆变器市场被国际几大巨头瓜分,欧洲作为全球光伏并网逆变器市场开展的先驱,具备了完善的光伏产业链,光伏并网逆变器技术处于世界领先地位。S
15、MA是全球最早、最大的光伏逆变器生产企业其中德国市场占有率达50%以上,2009年 SMA以占据全球市场份额44%独占鳌头。SMA、KACO、Fronius、Ingeteam、Siemens、Studer、Xantrex、Danfoss、Conergy、Satcon、Power-one、Outback power等根本占领全球光伏逆变器市场份额。其中排名前五位的企业占的市场份额已经超过了全球的70%。1.3 本课题研究的主要内容本论文主要设计了一种基于DSP控制的单相光伏并网逆变器的硬件电路,并用Protel DXP软件完成了整个系统的硬件电路,生成了PCB板。最后通过Matlab对电路进展了
16、仿真。其中硬件电路包括:直流斩波电路拓扑结构、逆变器电路、DSP控制电路、采样硬件电路和辅助电源。控制策略选择有:最大功率点跟踪、SPWM控制等。仿真局部主要针对升压斩波电路和逆变器局部参数设计的检验和分析。本文光伏并网逆变器设计参数如表1.1所示:表1.1 光伏并网逆变器设计参数序号名称参数1输出功率1kW2电池输出电压DC60140V3交流输出电压AC220V/50Hz4电网电压允许偏差-10%+7%5电网频率允许偏差6功率因数第二章 太阳能光伏并网的研究太阳能光伏发电原理是利用太阳能电池的光生伏打效应,它是通过将太阳能辐射的能量直接通过硅电池板转变成电能的一种可再生发电系统。太阳能光伏发
17、电系统一般由太阳能电池板阵列、充电蓄电池、逆变器和控制器等局部组成。本章将对太阳能光伏并网发电系统中的并网逆变器的拓扑结构进展设计,对其控制策略进展分析。2.1 光伏并网逆变器的拓扑结构设计2.1.1 按变压器拓扑结构分类目前,在实际的光伏发电系统应用中,按变压器拓扑结构分类的主电路有三种,分别是带工频变压器隔离的单级式逆变器、带高频变压器隔离的多级式逆变器和无变压器隔离的两级式逆变器。根据这三种逆变主电路,可以将现在的光伏发电系统的拓扑结构分为三类,即工频隔离型拓扑结构、高频隔离型拓扑结构和无变压器隔离拓扑结构。一、工频隔离型拓扑结构工频隔离型拓扑结构的太阳能光伏发电系统的根本组成:太阳能硅
18、电池阵列、直流侧的滤波器件、光伏并网逆变器、工频变压器、LC滤波电路等。其结构如图2.1所示。这种形式的太阳能光伏并网电磁干扰小,结构简单,维护量小,可靠性高,开关频率低。由于采用了工频变压器能起到与电网侧隔离、保护的作用,所以能够防止人体误触摸逆变器造成的伤害。但是由于采用了工频变压器,导致整个系统体积庞大、重量增大,比拟笨重、占用面积也增加。二、高频隔离型拓扑结构高频隔离型拓扑结构的太阳能发电系统指光伏并网逆变器经过两次直流电逆变成交流电能的变换。一次是经过高频方波逆变,用来提高变压器的工作频率,从而能够减轻变压器的体积和重量。变换后产生的高频方波经过高频变压器,然后再通过AC/DC整流电
19、路和滤波电路的作用后得到另一种直流电压,这种直流电压通过工频SPWM正弦脉宽调制控制的逆变器,得到并网所需要的波形。其结构如图2.2所示。这种形式的光伏并网逆变器拓扑结构能够显著提高光伏并网逆变器的性能,因为它采用了SPWM控制的方式进展了周波变换,所以使得输出的波形畸变比拟小,滤波电感体积也比拟小。它的缺点是能量传递的级数增多,这使得其中的能量损失变大。三、无变压器隔离拓扑结构无变压器隔离的光伏并网发电系统,即非隔离型里面不含隔离变压器,能量传递一般只有两级。因此系统体积小,能量损耗也小,是目前研究的热点4。其结构如图2.3所示。这种拓扑结构进一步降低了光伏发电系统设备的本钱,使得传输能量的
20、级数减少,提高了发电的效率。其中的DC/AC逆变器是有工频SPWM正弦脉宽调制控制的,这种形式的电路在大功率的光伏发电系统中有应用。把太阳能电池板阵列输出的直流电压通过DC/DC直流升压斩波电路升高到400V左右,这样可以利用直流侧平波储能大电容的作用,来保证输入逆变器局部的电压稳定。同时也能起到减小电流提高电压的作用,从而降低逆变局部的能量损耗,提高光伏并网的发电效率。这种拓扑结构的光伏并网系统启动的先决条件是直流侧滤波电容预先充电到接近电网电压的峰值5。2.1.2 按功率变换级数分类通常按照功率在光伏发电系统的变换级数进展分类可以分为两种类型:单级式光伏并网变换型和多级式光伏并网变换型。一
21、、单级光伏并网变换型单级式光伏并网变换型只用到一级的能量传递变换模式就能够完成boost-buck斩波电路和DC/AC逆变电路的变换,然后通过RC滤波并入电网。其结构如图2.4所示。这种类型的单级式光伏并网变换类型具有元器件使用少,可靠性高和效率高,并且功耗损耗少等优点。但是这种类型的光伏拓扑结构由于太阳能电池板输出的电压等级有限,多用于小型的系统中。二、多级式光伏并网变换型多级式光伏并网变换型逆变器拓扑结构包括:滤波、DC/DC直流斩波、DC/AC逆变电路、后级滤波电路等。其结构如图2.5所示。这种电路首先通过太阳能电池板阵列把太阳能辐射的能量转换为电能,经滤波电路后通过前级直流斩波电路捕捉
22、到最大功率点跟踪MPPT,然后经过工频逆变电路,并入交流电网。其优点是两级传递能量的电路,简化了控制电路的计算算法,使得每级都能够准确控制,提高了控制质量和效率。2.1.3 按控制方式分类按照控制方式可分为电流源式和电压源式两种拓扑类型。如果考虑到后端的输出控制方式,如此可将其划分为电压源式电压控制输出VSCV、电流源式电压控制输出CSCV、电压源式电流控制输出VSCC、电流源式电流控制输出CSCC四种。对于输入源的选择,要想得到一个稳定的电流源输入很不容易,要在输入端串入一个大电感,但这会使系统的动态响应较差,所以,一般采用电压源输入。对于输出控制方式的选择,如果输出控制方式为电压的话,如果
23、要使并网输出功率因数为1的话,如此要协调控制输出电压的幅值、相位和频率三个量;而如果输出控制方式为电流的话,如此只需要控制输出电流的相位和频率两个量,相对简单。所以,一般采用电压源输入电流控制输出的方式4。一、电压型逆变拓扑结构电压型逆变并网逆变器的拓扑结构指的是直流侧有一个直流电源或者并联有大电容,使得直流侧的电压根本无脉动,直流回路呈现低阻抗状态。其次由于直流侧电压源的钳位作用,交流侧输出的电压波形为矩形波,并且与负载阻抗角无关。而交流测输出电流的波形和相位因负载阻抗的不同而不同。最后当交流侧为阻感负载时需要提供无功功率,直流侧的电容起缓冲无功能量的作用。为了给交流侧向直流侧反响无功能量提
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 DSP 并网 逆变器 硬件 电路设计 毕业设计

链接地址:https://www.31ppt.com/p-4958071.html