信号与系统课件第一章.ppt
《信号与系统课件第一章.ppt》由会员分享,可在线阅读,更多相关《信号与系统课件第一章.ppt(112页珍藏版)》请在三一办公上搜索。
1、什么是信号?什么是系统?为什么把这两个概念连在一起?,信号的概念 系统的概念,1.1 绪论,第一章 信号与系统,消息(message):,信息(information):,信号(signal):,人们常常把来自外界的各种报道统称为消息。,通常把消息中有意义的内容称为信息。本课程中对“信息”和“消息”两词不加严格区分。,信号是信息的载体。通过信号传递信息。,一、信号的概念,信号实例,信号我们并不陌生。如 刚才铃声声信号,表示该上课了;十字路口的红绿灯光信号,指挥交通;电视机天线接受的电视信息电信号;广告牌上的文字、图象信号等等。,信号的产生、传输和处理需要一定的物理装置,这样的物理装置常称为系统
2、。,一般而言,系统(system)是指若干相互关联的事物组合而成具有特定功能的整体。,如手机、电视机、通信网、计算机网等都可以看成系统。它们所传送的语音、音乐、图象、文字等都可以看成信号。,系统的基本作用是对信号进行传输和处理。,输入信号,激励,输出信号,响应,二、系统的概念,通信系统,为传送消息而装设的全套技术设备,信号处理,对信号进行某种加工或变换。,目的:消除信号中的多余内容;滤除混杂的噪声和干扰;将信号变换成容易分析与识别的形式,便于估计和选择它的特征参量。信号处理的应用已遍及许多科学技术领域。,信号传输,通信的目的是为了实现消息的传输。,原始的光通信系统古代利用烽火传送边疆警报;,声
3、音信号的传输击鼓鸣金。,利用电信号传送消息。1837年,莫尔斯()发明电报;1876年,贝尔()发明电话。,利用电磁波传送无线电信号。1901年,马可尼(G.Marconi)成功地实现了横渡大西洋的无线电通信;全球定位系统GPS(Global Positioning System);个人通信具有美好的发展前景。,信号的描述 信号的分类几种典型确定性信号,1.2 信号的描述和分类,一、信号的描述,信号是信息的一种物理体现。它一般是随时间或位置变化的物理量。,信号按物理属性分:电信号和非电信号。它们可以相互转换。电信号容易产生,便于控制,易于处理。本课程讨论电信号-简称“信号”。,电信号的基本形式
4、:随时间变化的电压或电流。,描述信号的常用方法(1)表示为时间的函数(2)信号的图形表示-波形“信号”与“函数”两词常相互通用。,二、信号的分类,按实际用途划分:电视信号,雷达信号,控制信号,通信信号,广播信号,,信号的分类方法很多,可以从不同的角度对信号进行分类。,按所具有的时间特性划分:确定信号和随机信号;连续信号和离散信号;周期信号和非周期信号;能量信号与功率信号;一维信号与多维信号;因果信号与反因果信号;实信号与复信号;左边信号与右边信号;等等。,1.确定信号和随机信号,可用确定的时间函数表示的信号。对于指定的某一时刻t,有确定的函数值f(t)。,确定性信号,随机信号,伪随机信号,貌似
5、随机而遵循严格规律产生的信号(伪随机码)。,取值具有不确定性的信号。如:电子系统中的起伏热噪声、雷电干扰信号。,2.连续信号和离散信号,连续时间信号:在连续的时间范围内(-t)有定义的信号,简称连续信号。这里的“连续”指函数的定义域时间是连续的,但可含间断点,至于值域可连续也可不连续。用t表示连续时间变量。,值域连续,值域不连续,离散时间信号:,仅在一些离散的瞬间才有定义的信号,简称离散信号。,定义域时间是离散的,它只在某些规定的离散瞬间给出函数值,其余时间无定义。如右图的f(t)仅在一些离散时刻tk(k=0,1,2,)才有定义,其余时间无定义。离散点间隔Tk=tk+1-tk可以相等也可不等。
6、通常取等间隔T,离散信号可表示为f(kT),简写为f(k),这种等间隔的离散信号也常称为序列。其中k称为序号。,上述离散信号可简画为,用表达式可写为,或写为,通常将对应某序号m的序列值称为第m个样点的“样值”。,模拟信号,抽样信号,数字信号,数字信号:时间和幅值均为离散 的信号。,模拟信号:时间和幅值均为连续 的信号。,抽样信号:时间离散的,幅值 连续的信号。,量化,抽样,连续信号与模拟信号,离散信号与数字信号常通用。,3.周期信号和非周期信号,定义在(-,)区间,每隔一定时间T(或整数N),按相同规律重复变化的信号。,连续周期信号f(t)满足 f(t)=f(t+mT),m=0,1,2,离散周
7、期信号f(k)满足 f(k)=f(k+mN),m=0,1,2,满足上述关系的最小T(或整数N)称为该信号的周期。,不具有周期性的信号称为非周期信号。,举例,由上面几例可看出:连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。,例1,例2,例3,连续周期信号示例,离散周期信号示例1,离散周期信号示例2,4能量信号与功率信号,将信号f(t)施加于1电阻上,它所消耗的瞬时功率为|f(t)|2,在区间(,)的能量和平均功率定义为,(1)信号的能量E,(2)信号的功率P,若信号f(t)的能量有界,即 E,则称其为能量有限信号,简称
8、能量信号。此时 P=0,若信号f(t)的功率有界,即 P,则称其为功率有限信号,简称功率信号。此时 E=,离散信号的功率和能量,对于离散信号,也有能量信号、功率信号之分。,若满足 的离散信号,称为能量信号。,若满足 的离散信号,称为功率信号。,一般规律,一般周期信号为功率信号。,时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。,还有一些非周期信号,也是非能量信号。如(t)是功率信号;而t(t)、e t为非功率非能量信号;(t)是无定义的非功率非能量信号。,5一维信号和多维信号,一维信号:只由一个自变量描述的信号,如语音信号。多维信号:由多个自变量描述的信号,如图像信号。,还有其他分类
9、,如:实信号与复信号 左边信号与右边信号 因果信号和反因果信号等等。,三几种典型确定性信号,本课程讨论确定性信号。先连续,后离散;先周期,后非周期。,1.指数信号,2.正弦信号,3.复指数信号(表达具有普遍意义),4.抽样信号(Sampling Signal),抽样信号(Sampling Signal),复指数信号,讨论,离散周期信号举例1,例 判断正弦序列f(k)=sin(k)是否为周期信号,若是,确定其周期。,解 f(k)=sin(k)=sin(k+2m),m=0,1,2,式中称为数字角频率,单位:rad。由上式可见:仅当2/为整数时,正弦序列才具有周期N=2/。当2/为有理数时,正弦序列
10、仍为具有周期性,但其周期为N=M(2/),M取使N为整数的最小整数。当2/为无理数时,正弦序列为非周期序列。,离散周期信号举例2,例 判断下列序列是否为周期信号,若是,确定其周期。(1)f1(k)=sin(3k/4)+cos(0.5k)(2)f2(k)=sin(2k),解(1)sin(3k/4)和cos(0.5k)的数字角频率分别为 1=3/4 rad,2=0.5 rad由于2/1=8/3,2/2=4为有理数,故它们的周期分别为N1=8,N2=4,故f1(k)为周期序列,其周期为N1和N2的最小公倍数8。(2)sin(2k)的数字角频率为 1=2 rad;由于2/1=为无理数,故f2(k)=s
11、in(2k)为非周期序列。,连续周期信号举例,例 判断下列信号是否为周期信号,若是,确定其周期。(1)f1(t)=sin2t+cos3t(2)f2(t)=cos2t+sint,分析,两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。,解答,解答,(1)sin2t是周期信号,其角频率和周期分别为 1=2 rad/s,T1=2/1=s cos3t是周期信号,其角频率和周期分别为 2=3 rad/s,T2=2/2=(2/3)s由于T1/T2=3/2为有理数,故f1(t)为周期信号,其周期为
12、T1和T2的最小公倍数2。,(2)cos2t 和sint的周期分别为T1=s,T2=2 s,由于T1/T2为无理数,故f2(t)为非周期信号。,正弦信号,振幅:K 周期:频率:f 角频率:初相:,衰减正弦信号:,指数信号,重要特性:其对时间的微分和积分仍然是指数形式。,单边指数信号,通常把 称为指数信号的时间常数,记作,代表信号衰减速度,具有时间的量纲。,l 指数衰减,l 指数增长,l 直流(常数),两信号相加或相乘 信号的时间变换 反转 平移 尺度变换 信号的微分和积分,1.3 信号的基本运算,一、信号的加法和乘法,同一瞬时两信号对应值相加(相乘)。,离散序列相加、乘,二、信号的时间变换,1
13、.信号的反转2.信号的平移3.信号的展缩(尺度变换)4.混合运算举例,1.信号反转,将 f(t)f(t),f(k)f(k)称为对信号f()的反转或反折。从图形上看是将f()以纵坐标为轴反转180o。如,t-t,2.信号的平移,将 f(t)f(t t0),f(k)f(t k0)称为对信号f()的平移或移位。若t0(或k0)0,则将f()右移;否则左移。如,雷达接收到的目标回波信号就是平移信号。,3.信号的展缩(尺度变换),将 f(t)f(a t),称为对信号f(t)的尺度变换。若a 1,则波形沿横坐标压缩;若0 a 1,则扩展。如,对于离散信号,由于 f(a k)仅在为a k 为整数时才有意义,
14、进行尺度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。,4.混合运算举例,例1,例3,平移与反转相结合,平移、反转、尺度变换相结合,正逆运算。,例2,平移与尺度变换相结合,可以看出:混合运算时,三种运算的次序可任意。但一定要注意一切变换都是相对t 而言。通常,对正向运算,先平移,后反转和展缩不易出错;对逆运算,反之。,三微分和积分,冲激信号,平移、展缩、反折相结合举例,例 已知f(t)如图所示,画出 f(-2t-4)。,解答,也可以先压缩、再平移、最后反转。,若已知f(4 2t),画出 f(t)。,验证:,计算特殊点,平移与反转相结合举例,例 已知f(t)如图所示,画出 f(2 t)
15、。,解答,法一:先平移f(t)f(t+2),再反转 f(t+2)f(t+2),法二:先反转 f(t)f(t),再平移 f(t)f(t+2),左移,右移,=f(t 2),平移与展缩相结合举例,例 已知f(t)如图所示,画出 f(3t+5)。,解答,时移,尺度变换,尺度变换,时移,阶跃函数 冲激函数是两个典型的奇异函数。阶跃序列和单位样值序列,1.4 阶跃函数和冲激函数,函数本身有不连续点(跳变点)或其导数与积分有不连续点的一类函数统称为奇异信号或奇异函数。,一、单位阶跃函数,下面采用求函数序列极限的方法定义阶跃函数。,选定一个函数序列n(t)如图所示。,1.定义,2.延迟单位阶跃信号,3.阶跃函
16、数的性质,(1)可以方便地表示某些信号,f(t)=2(t)-3(t-1)+(t-2),(2)用阶跃函数表示信号的作用区间,(3)积分,二单位冲激函数,单位冲激函数是个奇异函数,它是对强度极大,作用时间极短一种物理量的理想化模型。,狄拉克(Dirac)定义 函数序列定义(t)冲激函数与阶跃函数关系 冲激函数的性质,1.狄拉克(Dirac)定义,函数值只在t=0时不为零;,积分面积为1;,t=0 时,为无界函数。,2.函数序列定义(t),对n(t)求导得到如图所示的矩形脉冲pn(t)。,求导,高度无穷大,宽度无穷小,面积为1的对称窄脉冲。,3.(t)与(t)的关系,n,引入冲激函数之后,间断点的导
17、数也存在,f(t)=2(t+1)-2(t-1),f(t)=2(t+1)-2(t-1),三 冲激函数的性质,取样性冲激偶 尺度变换复合函数形式的冲激函数,1.取样性(筛选性),对于平移情况:,如果f(t)在t=0处连续,且处处有界,则有,证明,举例,2.冲激偶,冲激偶的性质,f(t)(t)=f(0)(t)f(0)(t),证明,证明,(n)(t)的定义:,(t)的平移:,例,3.对(t)的尺度变换,证明,推论:,(1),(2t)=0.5(t),(2)当a=1时,所以,(t)=(t)为偶函数,(t)=(t)为奇函数,举例,举例,已知f(t),画出g(t)=f(t)和 g(2t),4.复合函数形式的冲
18、激函数,实际中有时会遇到形如f(t)的冲激函数,其中f(t)是普通函数。并且f(t)=0有n个互不相等的实根 ti(i=1,2,n),(t2 4)=1(t+2)+(t 2),f(t)图示说明:例f(t)=t2 4,一般地,,这表明,f(t)是位于各ti处,强度为 的n个冲激函数构成的冲激函数序列。,注意:如果f(t)=0有重根,f(t)无意义。,(t 2 4)=1(t+2)+(t 2),#,冲激函数的性质总结,(1)取样性,(2)奇偶性,(3)比例性,(4)微积分性质,(5)冲激偶,四.序列(k)和(k),这两个序列是普通序列。,1.单位(样值)序列(k),取样性质:,f(k)(k)=f(0)
19、(k),f(k)(k k0)=f(k0)(k k0),例,定义,2.单位阶跃序列(k)定义,(k)与(k)的关系,(k)=(k)(k 1),或,(k)=(k)+(k 1)+,定义,冲激函数取样性质证明,分t=0和t 0 两种情况讨论,当t 0 时,,(t)=0,,f(t)(t)=0,,(注意:当t 0 时),积分结果为0,当t=0 时,,(t)0,,f(t)(t)=f(0)(t),,(注意:当t=0 时),冲激偶积分证明,利用分部积分运算,冲激偶取样性证明,f(t)(t)=f(t)(t)+f(t)(t)f(t)(t)=f(t)(t)f(t)(t)=f(0)(t)f(0)(t),取样性质举例,0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号 系统 课件 第一章
链接地址:https://www.31ppt.com/p-4951377.html