圆锥曲线解题十招全归纳.doc
《圆锥曲线解题十招全归纳.doc》由会员分享,可在线阅读,更多相关《圆锥曲线解题十招全归纳.doc(43页珍藏版)》请在三一办公上搜索。
1、圆锥曲线解题十招全归纳(本资料由品数学提供)招式一:弦的垂直平分线问题2招式二:动弦过定点的问题4招式四:共线向量问题6招式五:面积问题13招式六:弦或弦长为定值、最值问题16招式七:直线问题20招式八:轨迹问题24招式九:对称问题31招式十、存在性问题34招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线与曲线N :交于A、B两点,在x轴上是否存在一点E(,0),使得是等边三角形,若存在,求出;若不存在,请说明理由。解:依题意知,直线的斜率存在,且不等于0。设直线,。由消y整理,得 由直线和抛物线交于两点,得即 由韦达定理,得:。则线段AB的中点为。线段的垂直平分线方程为:令y=0,
2、得,则为正三角形,到直线AB的距离d为。解得满足式此时。【涉及到弦的垂直平分线问题】 这种问题主要是需要用到弦AB的垂直平分线L的方程,往往是利用点差或者韦达定理产生弦AB的中点坐标M,结合弦AB与它的垂直平分线L的斜率互为负倒数,写出弦的垂直平分线L的方程,然后解决相关问题,比如:求L在x轴y轴上的截距的取值范围,求L过某定点等等。有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB的中点问题,比如:弦与某定点D构成以D为顶点的等腰三角形(即D在AB的垂直平分线上)、曲线上存在两点AB关于直线m对称等等。例题分析1:已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|
3、AB|等于解:设直线的方程为,由,进而可求出的中点,又由在直线上可求出,由弦长公式可求出招式二:动弦过定点的问题例题2、已知椭圆C:的离心率为,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。(I)求椭圆的方程;(II)若直线与x轴交于点T,点P为直线上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论解:(I)由已知椭圆C的离心率,,则得。从而椭圆的方程为(II)设,直线的斜率为,则直线的方程为,由消y整理得是方程的两个根,则,即点M的坐标为,同理,设直线A2N的斜率为k2,则得点N的坐标为,直线MN的方程为:,令y=0,得,将
4、点M、N的坐标代入,化简后得:又,椭圆的焦点为,即故当时,MN过椭圆的焦点。招式三:过已知曲线上定点的弦的问题例题4、已知点A、B、C是椭圆E: 上的三点,其中点A是椭圆的右顶点,直线BC过椭圆的中心O,且,如图。(I)求点C的坐标及椭圆E的方程;(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线对称,求直线PQ的斜率。 解:(I) ,且BC过椭圆的中心O又点C的坐标为。A是椭圆的右顶点,则椭圆方程为:将点C代入方程,得,椭圆E的方程为(II) 直线PC与直线QC关于直线对称,设直线PC的斜率为,则直线QC的斜率为,从而直线PC的方程为:,即,由消y,整理得:是方程的一个根,即同
5、理可得:则直线PQ的斜率为定值。招式四:共线向量问题1:如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足的轨迹为曲线E.I)求曲线E的方程;II)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足,求的取值范围.解:(1)NP为AM的垂直平分线,|NA|=|NM|又动点N的轨迹是以点C(1,0),A(1,0)为焦点的椭圆.且椭圆长轴长为焦距2c=2. 曲线E的方程为 (2)当直线GH斜率存在时,设直线GH方程为得设 ,又当直线GH斜率不存在,方程为 2:已知椭圆C的中心在坐标原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率为.(1)求椭圆
6、C 的标准方程;(2)过椭圆C 的右焦点作直线交椭圆C于、两点,交轴于点,若, ,求证:.解:设椭圆C的方程为 ()抛物线方程化为,其焦点为, 则椭圆C的一个顶点为,即 由,椭圆C的方程为 (2)证明:右焦点,设,显然直线的斜率存在,设直线的方程为 ,代入方程 并整理,得, 又,而 , ,即,所以 3、已知OFQ的面积S=2, 且。设以O为中心,F为焦点的双曲线经过Q, ,当取得最小值时,求此双曲线方程。解:设双曲线方程为, Q(x0, y0)。 , SOFQ=,。=c(x0c)=。当且仅当,所以。类型1求待定字母的值例1设双曲线C:与直线L:x+y=1相交于两个不同的点A、B,直线L与y轴交
7、于点P,且PA=,求的值思路:设A、B两点的坐标,将向量表达式转化为坐标表达式,再利用韦达定理,通过解方程组求a的值。 解:设A(x1,y1),B(x2,y2),P(0,1)PA= x1=.联立消去y并整理得,(1a2)x2+2a2x2a2=0(*)A、B是不同的两点,0a且a1. 于是x1+x2= 且x1 x2=,即,消去x2得,=,a=,0a0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。解:(1)因为椭圆E: (
8、a,b0)过M(2,) ,N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即, 则=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以, 当时因为所以,所以,所以当且仅当时取”=”. 当时,. 当AB的斜率不存在时, 两个交点为或,所以此时,综上, |AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 解题 十招全 归纳
链接地址:https://www.31ppt.com/p-4945905.html