核磁共振波谱分析法.ppt
《核磁共振波谱分析法.ppt》由会员分享,可在线阅读,更多相关《核磁共振波谱分析法.ppt(92页珍藏版)》请在三一办公上搜索。
1、2023/5/23,第八章 核磁共振波谱分析法,一、原子核的自旋atomic nuclear spin二、核磁共振现象nuclear magnetic resonance三、核磁共振条件condition of nuclear magnetic resonance四、核磁共振波谱仪nuclear magnetic resonance spectrometer,第一节 核磁共振基本原理,nuclear magnetic resonance spectroscopy;NMR,principles of nuclear magnetic resonance,2023/5/23,一、原子核的自旋 at
2、omic nuclear spin,若原子核存在自旋,产生核磁矩:自旋角动量:,核磁子=eh/2M c;自旋量子数(I)不为零的核都具有磁矩,,核 磁 矩:,2023/5/23,讨论:,(1)I=0 的原子核 16 O;12 C;22 S等,无自旋,没有磁矩,不产生共振吸收(2)I=1 或 I 0的原子核 I=1:2H,14N I=3/2:11B,35Cl,79Br,81Br I=5/2:17O,127I,这类原子核的核电荷分布可看作一个椭圆体,电荷分布不均匀,共振吸收复杂,研究应用较少;(3)1/2的原子核 1H,13C,19F,31P 原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋,有
3、磁矩产生,是核磁共振研究的主要对象,C,H也是有机化合物的主要组成元素。,2023/5/23,1,E2=+m H0E=E2 E1=2m H0E1=m H0,2023/5/23,二、核磁共振现象 nuclear magnetic resonance,自旋量子数 I=1/2的原子核(氢核),可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。,当置于外磁场H0中时,相对于外磁场,有(2I+1)种取向:氢核(I=1/2),两种取向(两个能级):(1)与外磁场平行,能量低,磁量子数1/2;(2)与外磁场相反,能量高,磁量子数1/2;,2023/5/23,(核磁共振现象),两种取向不完全
4、与外磁场平行,5424 和 125 36,相互作用,产生进动(拉莫进动)进动频率 0;角速度0;0=2 0=H0 磁旋比;H0外磁场强度;两种进动取向不同的氢核之间的能级差:E=H0(磁矩),2023/5/23,三、核磁共振条件 condition of nuclear magnetic resonance,在外磁场中,原子核能级产生裂分,由低能级向高能级跃迁,需要吸收能量。能级量子化。射频振荡线圈产生电磁波。,对于氢核,能级差:E=H0(磁矩)产生共振需吸收的能量:E=H0=h 0 由拉莫进动方程:0=2 0=H0;共振条件:0=H0/(2),2023/5/23,共振条件,(1)核有自旋(磁
5、性核)(2)外磁场,能级裂分;(3)照射频率与外磁场的比值0/H0=/(2),2023/5/23,能级分布与弛豫过程,不同能级上分布的核数目可由Boltzmann 定律计算:,磁场强度2.3488 T;25C;1H的共振频率与分配比:,两能级上核数目差:1.610-5;,弛豫(relaxtion)高能态的核以非辐射的方式回到低能态。,饱和(saturated)低能态的核等于高能态的核。,2023/5/23,讨论:,共振条件:0=H0/(2)(1)对于同一种核,磁旋比 为定值,H0变,射频频率变。(2)不同原子核,磁旋比 不同,产生共振的条件不同,需要的磁场强度H0和射频频率不同。(3)固定H0
6、,改变(扫频),不同原子核在不同频率处发生共振(图)。也可固定,改变H0(扫场)。扫场方式应用较多。氢核(1H):1.409 T 共振频率 60 MHz 2.305 T 共振频率 100 MHz 磁场强度H0的单位:1高斯(GS)=10-4 T(特拉斯),2023/5/23,讨论:,在1950年,Proctor等人研究发现:质子的共振频率与其结构(化学环境)有关。在高分辨率下,吸收峰产生化学位移和裂分,如右图所示。由有机化合物的核磁共振图,可获得质子所处化学环境的信息,进一步确定化合物结构。,2023/5/23,四、核磁共振波谱仪 nuclear magnetic resonance spec
7、trometer,1永久磁铁:提供外磁场,要求稳定性好,均匀,不均匀性小于六千万分之一。扫场线圈。2 射频振荡器:线圈垂直于外磁场,发射一定频率的电磁辐射信号。60MHz或100MHz。,2023/5/23,3 射频信号接受器(检测器):当质子的进动频率与辐射频率相匹配时,发生能级跃迁,吸收能量,在感应线圈中产生毫伏级信号。,4样品管:外径5mm的玻璃管,测量过程中旋转,磁场作用均匀。,2023/5/23,核磁共振波谱仪,2023/5/23,样品的制备:,试样浓度:5-10%;需要纯样品15-30 mg;傅立叶变换核磁共振波谱仪需要纯样品1 mg;标样浓度(四甲基硅烷 TMS):1%;溶剂:1
8、H谱 四氯化碳,二硫化碳;氘代溶剂:氯仿,丙酮、苯、二甲基亚砜的氘代物;,2023/5/23,傅立叶变换核磁共振波谱仪,不是通过扫场或扫频产生共振;恒定磁场,施加全频脉冲,产生共振,采集产生的感应电流信号,经过傅立叶变换获得一般核磁共振谱图。(类似于一台多道仪),2023/5/23,超导核磁共振波谱仪:,永久磁铁和电磁铁:磁场强度100 kG 开始时,大电流一次性励磁后,闭合线圈,产生稳定的磁场,长年保持不变;温度升高,“失超”;重新励磁。超导核磁共振波谱仪:200-400HMz;可 高达600-700HMz;,2023/5/23,第八章 核磁共振波谱分析法,一、核磁共振与化学位移nuclea
9、r magnetic resonance and chemical shift二、影响化学位移的因素factors influenced chemical shift,第二节 核磁共振与化学位移,nuclear magnetic resonance spectroscopy,nuclear magnetic resonance and chemical shift,2023/5/23,一、核磁共振与化学位移 nuclear magnetic resonance and chemical shift,1.屏蔽作用与化学位移 理想化的、裸露的氢核;满足共振条件:0=H0/(2)产生单一的吸收峰;实
10、际上,氢核受周围不断运动着的电子影响。在外磁场作用下,运动着的电子产生相对于外磁场方向的感应磁场,起到屏蔽作用,使氢核实际受到的外磁场作用减小:H=(1-)H0:屏蔽常数。越大,屏蔽效应越大。0=/(2)(1-)H0 屏蔽的存在,共振需更强的外磁场(相对于裸露的氢核)。,2023/5/23,化学位移:chemical shift,0=/(2)(1-)H0 由于屏蔽作用的存在,氢核产生共振需要更大的外磁场强度(相对于裸露的氢核),来抵消屏蔽影响。,在有机化合物中,各种氢核 周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。,2023/5/23,2
11、.化学位移的表示方法,(1)位移的标准没有完全裸露的氢核,没有绝对的标准。,相对标准:四甲基硅烷Si(CH3)4(TMS)(内标)位移常数 TMS=0(2)为什么用TMS作为基准?a.12个氢处于完全相同的化学环境,只产生一个尖峰;b.屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭;c.化学惰性;易溶于有机溶剂;沸点低,易回收。,2023/5/23,位移的表示方法,与裸露的氢核相比,TMS的化学位移最大,但规定 TMS=0,其他种类氢核的位移为负值,负号不加。,=(样-TMS)/TMS 106(ppm),小,屏蔽强,共振需要的磁场强度大,在高场出现,图右侧;大,屏蔽弱,共振需要的磁场强度小,
12、在低场出现,图左侧;,2023/5/23,二、影响化学位移的因素 factors influenced chemical shift,1电负性-去屏蔽效应 与质子相连元素的电负性越强,吸电子作用越强,价电子偏离质子,屏蔽作用减弱,信号峰在低场出现。,-CH3,=1.62.0,高场;-CH2I,=3.0 3.5,-O-H,-C-H,大 小低场 高场,2023/5/23,电负性对化学位移的影响,碳杂化轨道电负性:SPSP2SP3,2023/5/23,影响化学位移的因素-磁各向异性效应,价电子产生诱导磁场,质子位于其磁力线上,与外磁场方向一致,去屏蔽。,2023/5/23,影响化学位移的因素3,价电
13、子产生诱导磁场,质子位于其磁力线上,与外磁场方向一致,去屏蔽。,2023/5/23,影响化学位移的因素4,苯环上的6个电子产生较强的诱导磁场,质子位于其磁力线上,与外磁场方向一致,去屏蔽。,2023/5/23,2.氢键效应,形成氢键后1H核屏蔽作用减少,氢键属于去屏蔽效应。,2023/5/23,3.空间效应,2023/5/23,空间效应,Ha=3.92ppmHb=3.55ppm Hc=0.88ppm,Ha=4.68ppmHb=2.40ppm Hc=1.10ppm,去屏蔽效应,2023/5/23,4.各类有机化合物的化学位移,饱和烃,-CH3:CH3=0.791.10ppm-CH2:CH2=0.
14、981.54ppm-CH:CH=CH3+(0.5 0.6)ppm,H=3.24.0ppmH=2.23.2ppmH=1.8ppmH=2.1ppmH=23ppm,2023/5/23,各类有机化合物的化学位移,烯烃,端烯质子:H=4.85.0ppm,内烯质子:H=5.15.7ppm,与烯基,芳基共轭:H=47ppm,芳香烃,芳烃质子:H=6.58.0ppm,供电子基团取代-OR,-NR2 时:H=6.57.0ppm,吸电子基团取代-COCH3,-CN,-NO2 时:H=7.28.0ppm,2023/5/23,各类有机化合物的化学位移,-COOH:H=1013ppm,-OH:(醇)H=1.06.0pp
15、m(酚)H=412ppm,-NH2:(脂肪)H=0.43.5ppm(芳香)H=2.94.8ppm(酰胺)H=9.010.2ppm,-CHO:H=910ppm,2023/5/23,常见结构单元化学位移范围,2023/5/23,第八章 核磁共振波谱分析法,一、自旋偶合与自旋裂分spin coupling and spin splitting二、峰裂分数与峰面积number of pear splitting and pear areas三、磁等同与磁不等同magnetically equivalent and nonequivalent,第三节 自旋偶合与自旋裂分,nuclear magnetic
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 核磁共振 波谱 分析
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4923061.html