呼和浩特智能终端产品项目可行性研究报告.docx
《呼和浩特智能终端产品项目可行性研究报告.docx》由会员分享,可在线阅读,更多相关《呼和浩特智能终端产品项目可行性研究报告.docx(133页珍藏版)》请在三一办公上搜索。
1、呼和浩特智能终端产品项目可行性研究报告xx集团有限公司报告说明根据全球半导体贸易统计组织(WSTS)的数据,2013年至2018年期间,全球集成电路行业呈现快速增长趋势,产业收入年均复合增长率为9.3%;2019年,受国际贸易摩擦冲击的影响,全球集成电路产业总收入为3,304亿美元,较2018年度下降16.0%。因贸易摩擦各项问题有所进展,加上数据中心设备需求增加、5G商用带动各种服务扩大、车辆持续智能化等,WSTS预计2020年全球集成电路产业市场规模有望重回增长。根据谨慎财务估算,项目总投资5642.49万元,其中:建设投资4652.62万元,占项目总投资的82.46%;建设期利息118.
2、33万元,占项目总投资的2.10%;流动资金871.54万元,占项目总投资的15.45%。项目正常运营每年营业收入9500.00万元,综合总成本费用8161.61万元,净利润973.86万元,财务内部收益率11.09%,财务净现值241.76万元,全部投资回收期7.25年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。项目建设符合国家产业政策,具有前瞻性;项目产品技术及工艺成熟,达到大批量生产的条件,且项目产品性能优越,是推广型产品;项目产品采用了目前国内最先进的工艺技术方案;项目设施对环境的影响经评价分析是可行的;根据项目财务评价分析,经济效益好,在财务方面是充分可行的。
3、本期项目是基于公开的产业信息、市场分析、技术方案等信息,并依托行业分析模型而进行的模板化设计,其数据参数符合行业基本情况。本报告仅作为投资参考或作为学习参考模板用途。目录第一章 市场分析7一、 人工智能相关芯片的市场规模7二、 人工智能相关芯片的市场规模13三、 中国集成电路行业概况19第二章 背景及必要性22一、 人工智能芯片领域发展概况22二、 人工智能芯片行业未来发展趋势27第三章 建筑工程方案32一、 项目工程设计总体要求32二、 建设方案33三、 建筑工程建设指标34第四章 产品规划方案36一、 建设规模及主要建设内容36二、 产品规划方案及生产纲领36第五章 发展规划分析39一、
4、公司发展规划39二、 保障措施40第六章 运营管理43一、 公司经营宗旨43二、 公司的目标、主要职责43三、 各部门职责及权限44四、 财务会计制度47第七章 法人治理54一、 股东权利及义务54二、 董事61三、 高级管理人员66四、 监事68第八章 项目实施进度计划70一、 项目进度安排70二、 项目实施保障措施71第九章 原材料及成品管理72一、 项目建设期原辅材料供应情况72二、 项目运营期原辅材料供应及质量管理72第十章 工艺技术设计及设备选型方案74一、 企业技术研发分析74二、 项目技术工艺分析76三、 质量管理77四、 项目技术流程78五、 设备选型方案82第十一章 组织机构
5、及人力资源84一、 人力资源配置84二、 员工技能培训84第十二章 劳动安全分析86一、 编制依据86二、 防范措施87三、 预期效果评价93第十三章 投资计划方案94一、 编制说明94二、 建设投资94三、 建设期利息98四、 流动资金100五、 项目总投资101六、 资金筹措与投资计划102第十四章 项目经济效益分析104一、 基本假设及基础参数选取104二、 经济评价财务测算104三、 项目盈利能力分析108四、 财务生存能力分析111五、 偿债能力分析111六、 经济评价结论113第十五章 项目招投标方案114一、 项目招标依据114二、 项目招标范围114三、 招标要求115四、 招
6、标组织方式115五、 招标信息发布117第十六章 附表附录118第一章 市场分析一、 人工智能相关芯片的市场规模1、全球市场规模(1)终端场景对人工智能芯片的需求采用专门为人工智能领域设计的处理器支撑人工智能应用是行业发展的必然趋势。理论上,利用终端中原有的通用CPU运行人工智能算法,也可在功能上实现相关应用。但对实时性要求高的场景(如智能驾驶等),对响应的延时极为敏感,基于CPU作人工智能计算远不能满足实时性要求,必须引入专门的人工智能处理器;而在手机、平板电脑、音箱、AR/VR眼镜、机器人等对散热、能耗敏感的消费类电子终端场景,采用CPU支撑人工智能算法,不仅性能不理想,计算的能耗亦不能满
7、足相关场景下的苛刻限制,同样需要采用专门的人工智能处理器提升性能降低能耗。智能手机经过多年硬件升级,屏幕、摄像头、机身材料等组件进一步提升空间有限,应用升级尤其是人工智能技术的应用成为助推智能手机发展的重要因素。人工智能相关应用虽然可以在传统的手机处理器芯片上运行,但在流畅度和能耗方面表现不够理想而且用户体验不佳,引入人工智能处理器增加手机芯片的运算能力逐渐成为主流。各大领先智能终端品牌厂商相继推出搭载人工智能处理器的新款智能手机产品,提升了用户使用人工智能应用时的用户体验,促进了集成智能处理器的手机芯片的普及和推广。根据Gartner预测,搭载人工智能应用的智能手机出货量占比将从2017年的
8、不到10%提升到2022年的80%,年销量超13亿部,带动终端人工智能芯片迎来高速增长。在消费电子行业中,除了智能手机之外,AR/VR、智能音箱、无人机、机器人等领域也是各厂商关注的重点,此类硬件终端均可与人工智能应用相结合,人工智能芯片的应用将加速推动下游消费电子行业的技术进步和产品体验优化。根据Gartner的预测,2020年人工智能芯片在消费电子终端市场的销售规模将超过25亿美元。智能驾驶是集导航、环境感知、控制与决策、交互等多项功能于一体的综合汽车智能系统,也是人工智能的重要应用领域之一。传统汽车主要由机械部件组成,集成电路应用占比较低,汽车电子功能相对简单,在结构和性能的改善中主要起
9、到辅助机械装置的作用;智能汽车能够为用户提供自动驾驶、影音娱乐、车辆互联等多样化服务,实现车辆行驶过程中完全自动化与智能化。据市场调研机构iiMediaResearch估计,2016年全球智能驾驶汽车市场规模为40.0亿美元,预计至2021年增长至70.3亿美元,复合增长率11.94%。智能驾驶系统的核心是芯片,汽车的新能源化和互联化进程必将要求底层硬件能够支撑高速运算的同时保持低功耗与逻辑控制,未来人工智能芯片在车载领域具备广阔的市场空间。(2)云端场景对人工智能芯片的需求近年来,集成电路行业在经历了手机及消费电子驱动的周期后,迎来了数据中心引领发展的阶段,对于海量数据进行计算和处理将成为带
10、动集成电路行业发展的新动能。大规模张量运算、矩阵运算是人工智能在计算层面的突出需求,高并行度的深度学习算法在视觉、语音和自然语言等方向上的广泛应用使得计算能力需求呈现指数型增长趋势。根据Cisco的预计,2016年至2021年全球数据中心负载任务量将成长近三倍,从2016年的不到250万个负载任务量增长到2021年的近570万个负载任务量。人工智能算法的不断普及和应用,和高性能计算能力的需求增长导致全球范围内数据中心对于计算加速硬件的需求不断上升。Intel作为传统CPU芯片厂商,较早地实现了数据中心产品的大规模销售,收入由2015年的159.8亿美元增长到2019年的234.8亿美元,年均复
11、合增长率为10.10%。作为GPU领域的代表性企业,Nvidia数据中心业务收入在2015年仅为3.4亿美元,自2016年起,Nvidia数据中心业务增长迅速,以72.23%的年均复合增长率实现了2019年29.8亿美元的收入,其增速远远超过了Nvidia其他板块业务的收入。Intel和Nvidia数据中心业务收入的快速增长体现了下游数据中心市场对于泛人工智能类芯片的旺盛需求。根据IDC报告显示,云端推理和训练所产生的云端智能芯片市场需求,预计将从2017年的26亿美元增长到2022年的136亿美元,年均复合增长率39.22%。(3)边缘端场景对人工智能芯片的需求云端受限于延时性和安全性,不能
12、满足部分对数据安全性和系统及时性要求较高的用户需求。这些用户的需求推动大量数据存储向边缘端转移。边缘计算是5G网络架构中的核心环节,在运营商边缘机房智能化改造的大背景下,能够解决5G网络对于低时延、高带宽、海量物联的部分要求,是运营商智能化战略的重要组成部分。边缘计算可以大幅提升生产效率,是智能制造的重要技术基础。根据Gartner预测,未来物联网将约有10%的数据需要在网络边缘进行存储和分析,按照这一比例进行推测,2020年全球边缘计算的市场需求将达到411.40亿美元。边缘计算将在未来3-5年创造海量硬件价值,为大量行业创造新的机遇。与云端智能芯片相比,边缘智能芯片的使用场景更加丰富,同时
13、单芯片售价并不昂贵。同时,在整个边缘计算市场的带动下,边缘智能芯片逐渐受到国内外芯片厂商的关注。根据ABIResearch预计,边缘智能芯片市场规模将从2019年的26亿美元增长到2024年的76亿美元。综合以上各方面来看,人工智能的各类应用场景,从云端溢出到边缘端,或下沉到终端,都离不开智能芯片对于“训练”与“推理”任务的高效支撑。当前人工智能应用越来越强调云、边、端的多方协同,对于芯片厂商而言,仅仅提供某一类应用场景的人工智能芯片是难以满足用户的需求。因此,各芯片厂商的多样化布局与竞争将促使整个人工智能芯片行业在未来几年实现高速发展。根据市场调研公司Tractica的研究报告,人工智能芯片
14、的市场规模将由2018年的51亿美元增长到2025年的726亿美元,年均复合增长率将达到46.14%。2、国内市场规模在经历了互联网和移动互联网的追赶之后,中国正成为一个重要的数据大国,IDC预计到2025年中国将拥有全球数据量的27.8%。另外,“中国制造2025”、“数字中国”等产业政策推动中国产业的信息化、智能化升级转型。这为我国人工智能芯片的发展提供了众多实际的应用场景。与全球市场相似,中国人工智能芯片市场主要分为终端、云端和边缘端。在终端,近年来,在全球智能手机出货量增速放缓的情况下,国产品牌手机销量强势上涨,与苹果、三星等国外终端厂商的市场份额逐渐缩小。人工智能的发展和通信网络的升
15、级推进着中国互联网的演变,同时也推动着智能终端的更新迭代。根据IDC对中国智能终端市场发展的预测,到2022年,40%的智能终端产品将拥有人工智能的相关功能。在国内头部智能终端厂商的带领下,人工智能芯片将成为智能手机等终端的标配,预计人工智能芯片在终端的应用将进入一个全新的普及阶段,渗透率将逐年提升。在云端,服务器及数据中心需要对大量原始数据进行运算处理,对于芯片等基础硬件的计算能力、计算进度、数据存储和带宽等都有较高要求。传统数据中心存在着能耗较高、计算效率较低等诸多发展瓶颈,因此数据中心中服务器的智能化将是未来发展趋势。根据IDC数据,2018年中国智能服务器市场规模为13.05亿美金(约
16、合人民币90亿元),同比增长131%,到2023年将达到43.26亿美金(约合人民币300亿元),整体市场年均复合增长率将达到27.08%。按照人工智能芯片占到人工智能服务器成本的30%-35%进行测算,未来中国服务器市场对于人工智能芯片的需求有望突破100亿元人民币。在边缘端,随着中国5G的快速商用落地,5G产业的各项配套产业将迎来快速发展的契机,车联网、工业互联网、物联网等应用行业将逐步进入发展的新阶段。根据赛迪顾问预测,到2022年中国边缘计算市场规模将达到325.31亿元。放眼全球,人工智能领域的应用目前均处于技术和需求融合的高速发展阶段,未形成统一的生态,就人工智能芯片这一细分领域而
17、言,国内芯片厂商与国外芯片巨头基本处于相似的发展阶段。而随着人工智能相关技术的进步,应用场景将更加多元化,中国人工智能芯片市场将得到进一步的发展。未来几年内,中国人工智能芯片市场规模将保持40%-50%的增长速度,到2024年,市场规模将达到785亿元。二、 人工智能相关芯片的市场规模1、全球市场规模(1)终端场景对人工智能芯片的需求采用专门为人工智能领域设计的处理器支撑人工智能应用是行业发展的必然趋势。理论上,利用终端中原有的通用CPU运行人工智能算法,也可在功能上实现相关应用。但对实时性要求高的场景(如智能驾驶等),对响应的延时极为敏感,基于CPU作人工智能计算远不能满足实时性要求,必须引
18、入专门的人工智能处理器;而在手机、平板电脑、音箱、AR/VR眼镜、机器人等对散热、能耗敏感的消费类电子终端场景,采用CPU支撑人工智能算法,不仅性能不理想,计算的能耗亦不能满足相关场景下的苛刻限制,同样需要采用专门的人工智能处理器提升性能降低能耗。智能手机经过多年硬件升级,屏幕、摄像头、机身材料等组件进一步提升空间有限,应用升级尤其是人工智能技术的应用成为助推智能手机发展的重要因素。人工智能相关应用虽然可以在传统的手机处理器芯片上运行,但在流畅度和能耗方面表现不够理想而且用户体验不佳,引入人工智能处理器增加手机芯片的运算能力逐渐成为主流。各大领先智能终端品牌厂商相继推出搭载人工智能处理器的新款
19、智能手机产品,提升了用户使用人工智能应用时的用户体验,促进了集成智能处理器的手机芯片的普及和推广。根据Gartner预测,搭载人工智能应用的智能手机出货量占比将从2017年的不到10%提升到2022年的80%,年销量超13亿部,带动终端人工智能芯片迎来高速增长。在消费电子行业中,除了智能手机之外,AR/VR、智能音箱、无人机、机器人等领域也是各厂商关注的重点,此类硬件终端均可与人工智能应用相结合,人工智能芯片的应用将加速推动下游消费电子行业的技术进步和产品体验优化。根据Gartner的预测,2020年人工智能芯片在消费电子终端市场的销售规模将超过25亿美元。智能驾驶是集导航、环境感知、控制与决
20、策、交互等多项功能于一体的综合汽车智能系统,也是人工智能的重要应用领域之一。传统汽车主要由机械部件组成,集成电路应用占比较低,汽车电子功能相对简单,在结构和性能的改善中主要起到辅助机械装置的作用;智能汽车能够为用户提供自动驾驶、影音娱乐、车辆互联等多样化服务,实现车辆行驶过程中完全自动化与智能化。据市场调研机构iiMediaResearch估计,2016年全球智能驾驶汽车市场规模为40.0亿美元,预计至2021年增长至70.3亿美元,复合增长率11.94%。智能驾驶系统的核心是芯片,汽车的新能源化和互联化进程必将要求底层硬件能够支撑高速运算的同时保持低功耗与逻辑控制,未来人工智能芯片在车载领域
21、具备广阔的市场空间。(2)云端场景对人工智能芯片的需求近年来,集成电路行业在经历了手机及消费电子驱动的周期后,迎来了数据中心引领发展的阶段,对于海量数据进行计算和处理将成为带动集成电路行业发展的新动能。大规模张量运算、矩阵运算是人工智能在计算层面的突出需求,高并行度的深度学习算法在视觉、语音和自然语言等方向上的广泛应用使得计算能力需求呈现指数型增长趋势。根据Cisco的预计,2016年至2021年全球数据中心负载任务量将成长近三倍,从2016年的不到250万个负载任务量增长到2021年的近570万个负载任务量。人工智能算法的不断普及和应用,和高性能计算能力的需求增长导致全球范围内数据中心对于计
22、算加速硬件的需求不断上升。Intel作为传统CPU芯片厂商,较早地实现了数据中心产品的大规模销售,收入由2015年的159.8亿美元增长到2019年的234.8亿美元,年均复合增长率为10.10%。作为GPU领域的代表性企业,Nvidia数据中心业务收入在2015年仅为3.4亿美元,自2016年起,Nvidia数据中心业务增长迅速,以72.23%的年均复合增长率实现了2019年29.8亿美元的收入,其增速远远超过了Nvidia其他板块业务的收入。Intel和Nvidia数据中心业务收入的快速增长体现了下游数据中心市场对于泛人工智能类芯片的旺盛需求。根据IDC报告显示,云端推理和训练所产生的云端
23、智能芯片市场需求,预计将从2017年的26亿美元增长到2022年的136亿美元,年均复合增长率39.22%。(3)边缘端场景对人工智能芯片的需求云端受限于延时性和安全性,不能满足部分对数据安全性和系统及时性要求较高的用户需求。这些用户的需求推动大量数据存储向边缘端转移。边缘计算是5G网络架构中的核心环节,在运营商边缘机房智能化改造的大背景下,能够解决5G网络对于低时延、高带宽、海量物联的部分要求,是运营商智能化战略的重要组成部分。边缘计算可以大幅提升生产效率,是智能制造的重要技术基础。根据Gartner预测,未来物联网将约有10%的数据需要在网络边缘进行存储和分析,按照这一比例进行推测,202
24、0年全球边缘计算的市场需求将达到411.40亿美元。边缘计算将在未来3-5年创造海量硬件价值,为大量行业创造新的机遇。与云端智能芯片相比,边缘智能芯片的使用场景更加丰富,同时单芯片售价并不昂贵。同时,在整个边缘计算市场的带动下,边缘智能芯片逐渐受到国内外芯片厂商的关注。根据ABIResearch预计,边缘智能芯片市场规模将从2019年的26亿美元增长到2024年的76亿美元。综合以上各方面来看,人工智能的各类应用场景,从云端溢出到边缘端,或下沉到终端,都离不开智能芯片对于“训练”与“推理”任务的高效支撑。当前人工智能应用越来越强调云、边、端的多方协同,对于芯片厂商而言,仅仅提供某一类应用场景的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 呼和浩特 智能 终端产品 项目 可行性研究 报告
链接地址:https://www.31ppt.com/p-4912239.html