20.4二次函数的性质教案.doc
《20.4二次函数的性质教案.doc》由会员分享,可在线阅读,更多相关《20.4二次函数的性质教案.doc(2页珍藏版)》请在三一办公上搜索。
1、20.4二次函数的性质教学目标:1.从具体函数的图象中认识二次函数的基本性质.2.了解二次函数与二次方程的相互关系.3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性教学重点:二次函数的最大值,最小值及增减性的理解和求法.教学难点:二次函数的性质的应用.教学过程:一、复习引入二次函数: y=ax2 +bx + c (a 0)的图象是一条抛物线,它的开口由什么决定呢?补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.二、新课教学:1.探索填空: 根据下边已画好抛物线y= -2
2、x2的顶点坐标是 , 对称轴是 , 在 侧,即x_0时, y随着x的增大而增大;在 侧,即x_0时, y随着x的增大而减小. 当x= 时,函数y最大值是_. 当x_0时,y0 3.归纳: 二次函数y=ax2+bx+c(a0)的图象和性质(1).顶点坐标与对称轴(2).位置与开口方向(3).增减性与最值当a 0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当 时,函数y有最小值 。当a 0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当 时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20.4 二次 函数 性质 教案
链接地址:https://www.31ppt.com/p-4905338.html