传感器基础之误差分析处理.ppt
《传感器基础之误差分析处理.ppt》由会员分享,可在线阅读,更多相关《传感器基础之误差分析处理.ppt(54页珍藏版)》请在三一办公上搜索。
1、第一章 生物医学传感器基础,本章教学目标,通过本章的学习,了解测量的一些基本理论;了解什么是传感器的静态特性、动态特性及其数学表达式表示方法,掌握传感器装置的静态特性指标和动态特性品质指标,仪表等级精度的概念,并能以此适当选择测量仪器。,测量概论,生物医学传感器的研究对象,生物体的物理、化学和生物参数,传感器检测中的关键问题,被测信号的大小、信号的确定性及其频谱,生理信号随机变化的特点,传感器的静态特性和动态特性,生物医学信号基本特性,传感器没有失真地反映测量信号,主要内容,测量概论误差分析处理测量不确定度数据表述传感器的基本特性静态特性动态特性传感器的干扰与噪声,传感器基础之 误差分析处理,
2、测量误差基本概念,测量误差的表示,测量误差的分类,有效数字,系统误差的消除,主要内容,随机误差的处理,粗大误差的剔除,测量误差基本概念,真值指被测量在一定条件下客观存在的、实际具备的量值。真值是不可确切获知的,实际测量中常用“约定真值”和“相对真值”。约定真值是用约定的办法确定的真值,如砝码的质量。相对真值是指具有更高精度等级的计量器的测量值。,标称值计量或测量器具上标注的量值。如标准砝码上标注的质量数。,示值由测量仪器(设备)给出的量值,也称测量值或测量结果。,测量误差测量结果与被测量真值之间的差值。,误差公理一切测量都具有误差,误差自始至终存在于所有科学试验的过程之中。研究误差的目的是找出
3、适当的方法减小误差,使测量结果更接近真值。,重复性在相同条件下,对同一被测量进行多次测量所得到的结果之间的一致性。相同条件包括:相同的测量程序、测量方法、观测人员、测量设备和测量地点等。,测量不确定度表示测量结果不能肯定的程度,或说是表征测量结果分散性的一个参数。它只涉及测量值,是可以量化的。经常由被测量算术平均值的标准差、相关量的标定不确定度等联合表示。,测量误差基本概念,准确度是测量结果中系统误差与随机误差的综合,表示测量结果与真值的一致程度,由于真值未知,准确度是个定性的概念。,测量误差的表示,3)引用误差绝对误差与测量仪表量程之比。按最大引用误差将电测量仪表的准确度等级分为7级,指数a
4、 分别为:0.1,0.2,0.5,1.0,1.5,2.5,5.0。,2)相对误差绝对误差与真值之比:在误差较小时,可以用测量值代替真值,称为示值相对误差x。,所以电测量仪表在使用中的最大可能误差为:,【例】某1.0级电压表,量程为300V,求测量值Ux分别为100V和200V时的最大绝对误差Um和示值相对误差Ux。,测量误差的表示,测量误差的分类,按产生原因分类,1)方法误差:方法误差是由于检测系统采用的测量原理与方法本身所产生的测量误差,是制约测量准确性的主要原因;,2)环境误差:环境误差是由于环境因素对测量影响而产生的误差。例如环境温度、湿度、灰尘、电磁干扰、机械振动等存在于测量系统之外的
5、干扰会引起被测样品的性能变化,使检测系统产生的误差;,按产生原因分类,5)随机误差:相同条件下测量产生的偶然误差(重复测量)。,3)装置误差:装置误差是检测系统本身固有的各种因素影响而产生的误差。传感器、元器件与材料性能、制造与装配的技术水平等都直接影响检测系统的准确性和稳定性产生的误差;,4)处理误差:数据处理误差是检测系统对测量信号进行运算处理时产生的误差,包括数字化误差、计算误差等;,测量误差的分类,按误差性质分类,1)系统误差在重复条件下,对同一物理量无限多次测量结果的平均值减去该被测量的真值。系统误差大小、方向恒定一致或按一定规律变化。,测量误差的分类,系统误差产生的原因:测量系统性
6、能不完善 检测设备和电路等安装、布置、调整不当 因温度、气压等环境条件发生变化 测量方法不完善或测量理论依据不完善 例如:仪表盘刻度不准确造成恒值误差,系统误差的主要特征:出现的规律性和产生原因的可知性;通常系统误差可以通过实验的方法或引入修正值的方法计算修正,也可以重新调整测量仪表的有关部件予以消除。,2)随机误差测量示值减去在重复条件下同一被测量无限多次测量的平均值。随机误差具有抵偿特性。产生原因主要是温度波动、振动、电磁场扰动等不可预料和控制的微小变量。,测量误差的分类,随机误差产生的原因:一些微小因素,比如,外界微小的干扰等。随机误差只能用概率论和数理统计方法计算它出现可能性的概率。而
7、且随机误差不可能修正,但在了解其统计规律性之后,可以控制和减少它们对测量结果的影响。,系统误差和随机误差之间的关系:两种不同性质的误差,但在测量中难以区分。一般系统误差表现为测量结果偏离真值的程度大小,而随机误差表现为测量结果的分散程度。,测量误差的分类,随机误差的主要特征:绝对值相等、符号相反的误差在多次重复测量中出现的可能性相等;在一定测量条件下,随机误差的绝对值不会超过某一限度;绝对值小的随机误差比绝对值大的随机误差在多次重复测量中出现的机会多;随机误差的算术平均值随测量次数的增加而趋于零。随机误差呈现正态分布规律。,长度相对测量值,3)粗大误差明显超出规定条件下预期的误差,它是统计异常
8、值。产生原因主要是读数错误、仪器有缺陷或测量条件突变等。在数据处理时,允许也应该剔除含有粗大误差的数据,但必须有充分依据。,1)数据的舍入规则:四舍五入,末位取偶,一次舍入到位。目的是使正负舍入误差的概率近似相等。例如:将下列数据四舍五入,保留两位小数。12.434 4 12.43 25.325 0 25.33 63.735 01 63.74 17.695 0 17.70,2)有效数字:从左边第一个非零数字到最末一位数字为止的全部数字称为有效数字。它所隐含的意义是该数据的极限误差不超过其有效数字末位的半个单位。,3)有效数字位数的确定:测量结果的最末一位与测量不确定度的位数对齐。,有效数字,系
9、统误差的消除,根据不同测量目的,对测量仪器、仪表、测量条件、测量方法及步骤等进行全面分析,发现系统误差,采用相应的措施来消除或减弱它。分析系统误差产生的根源,从产生的来源上消除:仪器、环境、方法、人员素质等。分析系统误差的具体数值和变换规律,利用修正的方法来消除:通过资料、理论推导或者实验获取系统误差的修正值,最终测量值测量读数修正值。针对具体测量任务可以采取一些特殊方法,从测量方法上减小或消除系统误差。,多次测量求平均值不能减小系统误差,系统误差的消除,交换法测量:通过测量位置的变化,例如,天平测量时,天平臂长误差(恒值误差)可通过左右交换测量去平均来消除。,抵消法测量:如图,系统中存在有方
10、向的固定误差U,通过两次测量:,取平均值:,补偿法、差动测量法等均可以克服或消除系统误差,随机误差的处理,随机误差的统计特性,随机测量数据的分布,随机测量数据的特征参数,随机误差处理,随机测量数据的置信度,随机误差的统计特征,当其它误差可以忽略时,随机误差可以表示为测量值与真值之差:,随机误差的统计特征,(4)抵偿性:随着测量次数的增加,随机误差的代数和趋于零。,(1)对称性:绝对值相等的正、负误差出现的概率相同。,(2)有界性:绝对值很大的误差出现的概率为零。在一定的条件下,误差的绝对值不会超过某一界限。,(3)单峰性:绝对值小的误差出现的概率大于绝对值大的误差出现的概率;,随机测量数据的分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传感器 基础 误差 分析 处理
链接地址:https://www.31ppt.com/p-4893422.html