C波段一分三功分器的ADS设计.docx
《C波段一分三功分器的ADS设计.docx》由会员分享,可在线阅读,更多相关《C波段一分三功分器的ADS设计.docx(26页珍藏版)》请在三一办公上搜索。
1、分类号:TN455 密级:公开U DC: D10621-408 (2008) -0532-0 编号:2004022281成都信工程学院 论文C波段1分3功分器的设计与仿真论文作者姓名:向磊申请学位专业:电子信息工程申请学位类别:工学学士指导教师姓名(职称)唐论文提交日期:2008年06月15日C波段1分3功分器的设计与仿真摘要随着现代电子和通信技术的飞跃发展,信息交流越发频繁,各种各样电子 电气设备已大大影响到各个领域的企业及家庭。在微波通信领域,随着微波技 术的发展,功分器作为一个重要的器件,其性能对系统有不可忽略的影响,因 此其研制技术也需要不断的改进。本文首先对功分器的基本理论、性能指标
2、作了简单介绍,然后阐述了一个 具体的c波段一分三功分器的设计思路和过程,并给出了设计的电路结构、仿 真结果、生成了相应的Layout图,最后制作了版图。本文还用到了 ADS和 AutoCAD,在功分器的具体电路结构建模、仿真优化和版图的生成上如何应用, 在设计过程中文中都作出了相应的说明。关键词:插入损耗;隔离度;带内波动The Design And Simulation Of The C-Band1 Into 3 Power SplittersAbstractWith the leap development of the modern electronic and communicatio
3、n technology and the more and more frequent information exchange, various kinds of electrical and electronic equipments have greatly affected business and home in all domains. In the field of microwave communication, along with the development of microwave technology, as a key device, the influence
4、of the TplanicfeetDs,perfosystem can not be overlooked, so the development technology needs continuously improved.In this paper, the basic theory and the performance indicators of the splitters are simply introduced, and then the design idea and process of a specific C-band 1 into 3 splitters are ex
5、patiated. The circuit structure, the simulation results and the Layout chart are also givn. Finally, the Territory is made. ADS and AutoCAD are also used in the design. How to use them in the specific circuit modeling, simulation, optimization and Territory formation are correspondingly described in
6、 the paper.Key words:Insertion loss; Isolation; Bandwidth fluctuation论文总页数:21页1. 弓I言 11.1功分器设计背景 11.2国内外研究现状 11.3本课题研究内容 42. 功率分配器基本理论 42.1功率分配器的分类情况 42.2常用的功率分配器间的区别 42.3功分器的基本原理 42.3.1四分之一波长变换器 42.3.2功分器的原理 73. 功分器性能参数概念介绍123.1输入驻波比123.2频率范围123.3承受功率123.4插入损耗123.5隔离度133.6平衡133.7 S 参数134. 功分器的设计135
7、. 观察仿真曲线155.1调出仿真结果155.2观察仿真曲线155.3版图的生成17结 论18参考文献19致谢20声明211. 引言1.1功分器设计背景功分器是将输入信号功率分成相等或不相等的几路输出的一种多端口网 络,它广泛应用于雷达系统及天线的馈电系统中。功分器按照其功率分配比有 相应的设计公式可较为容易的实现。等分功分器按其分配支路的数量可分为 2n+1(奇)等分和2n (偶)等分两类。后者的设计方法相对简单,只需要在最 基本的一分二功分器上再等分即可。对于奇等分功分器,通常惯用的设计方法 是先2(n+1)等分,然后其中一路加负载,这种设计方法虽然简便,可是有着 结构受限,接负载端容易影
8、响其它端口相幅的一致性,并且插损较大。随着无线通信技术的快速发展,各种通讯系统的载波频率不断提高,小型 化低功耗的高频电子器件及电路设计使微带技术发挥了优势。在射频电路和测 量系统如混频器、功率放大器电路中的功率分配与耦合元件的性能将影响整个 系统的通讯质量刀。在通讯设备中,功分器有着非常广泛的应用,例如在相控阵雷达系统中, 要将发射机功率分配到各个发射单元中去。实际中常需要将某一功率按一定比 例分配到各分支电路中。功分器种类繁多,常见的功分器有变压器式、微带式 或带状线式、波导式和铁氧体式,它们各有优缺点和使用场合1。1.2国内外研究现状功率分配器作为一种低耗的无源器件广泛应用于微波毫米波系
9、统,其功能 是将输入功率分配到各个支路中。近年来,采用集成型的平面传输线设计的功 率分配器得到了快速的发展。在天线阵技术的馈电网络中,功率分配器可将功 率分配到各个阵列单元。功分网络中布线的设计质量直接影响整个天线的性能, 在实际设计中应考虑体积的小型化、相位、驻波、各端口的匹配和加工精度等 问题,目前的文献大都是针对小型的1-2功分网络。功分器可以采用腔体和微带的方法。腔体插损较小,功率容量较大,不过 隔离度不好,但插损和平衡度较好;而微带线设计方法就比较灵活,最简单的 可以在输出端口加单向铁氧体,为了减小体积,提高性能,目前最通用的还是 Wilkinson功率分配器的设计思想。微带功率分配
10、器有简单和混合型两类。在平面型微波集成电路中,直接分 成多路输出的只有简单的功率分配器才能实现,其加工工艺简单,但输出端不 匹配,各路输出之间隔离很小,工作频带较窄。混合型功率分配器,由于平面 电路上要对称地安置几个隔离电阻在结构上有困难,故一般只能做成两路功率 分配器,最多不超过三路,但它改善了输出端的匹配,又增大了各输出端口之 间的隔离。混合型多路功率分配器通常是用数个两路功率分配器级联而成1。 另外可用作功率分配器的有微带线定向耦合器和环形电桥,但是它们一般并不 称为功率分配器,因为一个功率分配器应该只有信号的输入端口和输出端口, 而不必有隔离端口。在微带功分器中,Wilkinson功分
11、器由于其自身结构的特点具有良好的特 性,是在毫米波微波大功率系统中应用最广泛的一种形式,其功率分配可以是 相等的或不相等的。威尔金森功分器一般只应用于X波段以下频率,当频率 升高就会出现许多问题,比如隔离电阻相对于工作频率有一个谐振频率点,不 能再被看作是纯电阻,它的尺寸可与工作波长相比拟,不能再看作集总元件。 为了得到高频段的谐振频率,电阻尺寸必须很小,这就意味着功分器的两个分 支电路必须凑的很近才能与电阻相连,但这样又会引起输出两支路间的强耦合, 破坏了我们所要的功分比凹。功分器现在有如下几种系列11:1、400MHz-500MHz频率段二、三功分器,应用于常规无线电通讯、铁路通 信以及4
12、50MHz无线本地环路系统。2、 800MHz-2500MHz频率段二、三、四微带系列功分器,应用于GSM / CDMA/PHS/WLAN室内覆盖工程。3、 800MHz-2500MHz频率段二、三、四腔体系列功分器,应用于GSM / CDMA/PHS/WLAN室内覆盖工程。4、1700MHz-2500MHz频率段二、三、四腔体系列功分器,应用于PHS/WLAN 室内覆盖工程。5、800MHz-1200MHz/1600MHz-2000MHz频率段小体积设备内使用的微带二、 三功分器。这里介绍几种常见的功分器:一、威尔金森功分器我们将两分支线长度由原来的3 变为334,这样使分支线长度变长,但
13、作用效果与4线相同。在两分支线之间留出电阻尺寸大小的缝隙,做成如图 1-1所示结构。图1-1威尔金森功分器二、变形威尔金森功分器将威尔金森功分器进行变形,做成如图1-2所示结构。两圆弧长度由原来 的N4变为3 V4,且将圆伸展开形成一个近似的半圆。每个支路通过左2传输 线与隔离电阻相连,这样做虽然会减小电路的工作带宽,但使输出耦合问题得 到了解决,而且可以用于不对称,功分比高的电路,隔离电阻的放置更加容易, 且两支路间的距离足够大,在输出口可直接接芯片。图1-2变形威尔金森功分器三、混合环混合环又称为环形桥路,它也可作为一种功率分配器使用。早期的混合环 是由矩形波导及其4个E-T分支构成的,由
14、于体积庞大已被微带或带状线环形 桥路所取代。图1-3为制作在介质基片上的微带混合环的几何图形,环的平均 周长为3人2,环上有四个输出端口,四个端口的中心间距均为人4。环路 各段归一化特性导纳分别为a, b, c,四个分支特性导纳均为y0。这种形式的 功率分配器具有较宽的带宽,低的驻波比和高的输出功率。理论上来说,它的 带宽可以同威尔金森功分器相比。混合环功分器相对威尔金森功分器的优点在 于,在实际应用中它在高频率上的性能更好一些。g对称平面图1-3混合环对比以上三种功分器,首先对比威尔金森功分器及变形威尔金森功分器, 变形威尔金森功分器性能与仿真结果相差较大,其原因可能有以下几点:加入 两个1
15、2波长微带线,引入了 T型接头,使微带线产生不连续性;为了保证两12 波长微带线之间的距离正好可以焊接电阻,两微带线均倾斜,使焊接电阻处微 带不均匀,另外电阻焊接的非对称性影响了功分器输出两端的功分比凹。威尔金森功分器和混合环的插损性能较好,可以满足一般功率合成的要求。在隔离方面,威尔金森功分器隔离较好,混合环的隔离要稍差。从上述三种功分器分析可以得出:要获得具有良好性能的微波毫米波功分 器,需保证一定的加工精度,对加隔离电阻的功分器,要特别注意选择尺寸较 小的电阻,焊接时要求电阻两端对称,且从电阻反面焊接,也可以考虑使用薄 膜电阻来实现。这三种功分器都可以串联用作多路功率分配/合成器。1.3
16、本课题研究内容本文主要是对微带功分器的研究,给出了功分器的设计实例,并且运用工具 软件进行仿真与优化,得到最优结果。本课题的具体内容是采用微带平面电路 结构设计一个工作在C波段、频率:3-4GHz、驻波:1.2、传输损耗:5.5dB、 隔离:20dB、带内波动:0.5dB的一分三功分器,并作出版图。2. 功率分配器基本理论2.1功率分配器的分类情况a、按路数分为:2路、3路和4路及通过级联形成的多路功率分配器。b、按结构分为:微带功率分配器及腔体功率分配器。c、根据电路形式可分为:微带线、带状线、同轴腔功率分配器。d、根据能量的分配分为:等分功率分配器及不等分功率分配器。2.2常用的功率分配器
17、间的区别常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、 带状线、同轴腔功率分配器,几者间的区别如下:a、同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而 且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口 间有很好的隔离,缺点是插损大,承受功率小。b、微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要 求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进 行分路,然后对输入端和输出端进行匹配1。2.3功分器的基本原理2.3.1四分之一波长变换器微带功分器的分支电路通常是用四分之一波长阻抗变换器,它是一种有用 而实际的
18、阻抗匹配电路。阻抗匹配的基本思想如图2-1所示,它将匹配网络放在负载和传输线之间。 理想的匹配网络是无耗的,而且通常设计成向匹配网络看去输入阻抗为z。虽 然在匹配网络和负载之间有很多次反射,但是在匹配网络左侧传输线上的0反射 被消除了。这个过程也被认为是调谐。阻抗匹配或调谐的原因是很重要的,原 因如下所述:(1)当负载与传输线匹配时(假设信号源是匹配的),可传送最大功率, 并且在馈线上功率损耗最小。(2)对阻抗匹配灵敏的接收机部件可改进系统的信噪比。(3) 在功率分配网络中(如天线阵馈电网络),阻抗匹配可以降低振幅和 相位不平衡。只要负载有非零实部,就能找到匹配网络。图2-1阻抗匹配网络四分之
19、一波长变换器对于匹配实数负载阻抗到传输线,是简单而有用的电 路。如下图所示,若主传输线的特性阻抗为z0,终端接纯电阻性负载ZL,但 z丰z,则可以在传输线与负载之间接入一特性阻抗为Z、长度l = X,4的传 输线段来实现匹配。01图2-2 E波长变换器设此时T。面上的反射系数为,则(2-1)z _ z(z L + z 0)+ 2 j(z 0 z L tg P l上式取模值为|r 1 =f 2Z Z)21 +0 Lsec ez.-Z7L011 2(2-2)在中心频率附近,上式可近似为|r|= ZvLi |cos e(2-3)2 Z Z当e = 0时,反射系数的模达到最大值,由式(2.-3)可以画
20、出|随e变 化的曲线,如图2-3所示。|随e (或频率)作周期变化,周期为兀。如果设r| 为反射系数模的最大容许值,则由疽4阻抗变换器提供的工作带宽对应于图中 限定的频率范围(Ae)。由于当e偏离时曲线急速下降,所以工作带宽是很 窄的。(2-4)qqm(兀- emW = L f 1 =e 2 e 1qfoe 0当已知z L和Z,且给定频带内容许的 m 算出相对带宽Wq值;反之,若给定巧,值,也可求出变换器的 e m取小于号2的值。对于单一频率或窄频带的阻抗匹配来说,一般单节变换器提供的带宽时,则由式(2-5)(2-5)可计,计算中 m能够满足要求。但如果要求在宽频带内实现阻抗匹配,那就必须采用
21、多节阶梯阻抗变换器或渐变线阻抗变换器。2.3.2功分器的原理功率分配器是将输入信号功率分成相等或不相等的几路功率输出的一种多 端口网络。任意多分路单节的功分器的电路拓扑结构如图2-4所示:图2-4功分器的电路示意图其中(a)为多路普通功分器的示意图,信号源与负载内阻均为:R = R = Z ;若为N等分,则Z = Z = Z,各段长度均为:X/4。这种功分器不能做到信道之间有隔离,1也不能做到各端口的完全匹配。图(b)为混合型N路功分器,不同之处在于各路输出端口均有一隔离电阻 R与公共结点相连。可以使输入功率分成大小不相等的N路输出,且各输出端 口同相位。若在输出端口反射,则波将在支线交叉口再
22、分配。由于各段长度为 X4。则往返的电长度为兀,彼此相消,从而实现各输出端口之间的相互隔离。一分三功分器是一个四端口网络,其S参数为:S = s , s , s , s ; s , s , s , s ; s , s , s , s ; s , s , s , s 11121314212223243132333441424344由于普通的无耗互易三端口网络不可能完全匹配,且输出端口间无隔离, 工程上对信道之间的隔离要求又很高,因此常用混合型的功率分配器,该结构 也称为威尔金森型功率分配器,它是有耗的三端口网络,是在毫米波微波大功 率系统中应用最广泛的一种形式,其功率分配可以是相等的或不相等的。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 波段 一分 三功分器 ADS 设计
链接地址:https://www.31ppt.com/p-4883757.html