平面向量数量积的坐标表示、模、夹角(比赛).ppt
《平面向量数量积的坐标表示、模、夹角(比赛).ppt》由会员分享,可在线阅读,更多相关《平面向量数量积的坐标表示、模、夹角(比赛).ppt(19页珍藏版)》请在三一办公上搜索。
1、2.4.2 平面向量数量积的坐标 表示、模、夹角,回顾复习:,1.向量a与b的数量积的含义是什么?,ab=|a|b|cos.其中为向量a与b的夹角,2.向量的数量积具有哪些运算性质?,(1)ab ab0(a0,b0);(2)a2a2;(3)abba;(4)(a)b(ab)a(b);(5)(ab)cacbc;,3.设a、b为两个向量,且a(x1,y1),b(x2,y2),a+b=a-b=,2.探究,我们学过两向量的和与差可以转化为它们相应的坐标来运算,那么怎样用,已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示ab?,a=x1i+y1j,b=x2i+y2j,ab=(
2、x1i+y1j)(x2i+y2j)=x1x2i2+x1y2ij+x2y1ij+y1y2j2=x1x2+y1y2,两个向量的数量积等于它们对应坐标的乘积的和,单位向量i,j分别与x轴,y轴方向相同i i=_,j j=_,i j=_,j i=_.,1,1,0,0,1.8 2.10 3.0,小试牛刀,1.a=(1,2)b=(2,3)2.a=(1,3)求a23.a=(1,-2)b=(2,1),向量平行和垂直的坐标表示式,设a、b为两个向量,且a(x1,y1),b(x2,y2),,ab,ab=0,x1x2+y1y2=0,思考:垂直的判定必须是非零向量才成立,为什么?,设a=(x,y),则|a|2=或|a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 数量 坐标 表示 夹角 比赛
链接地址:https://www.31ppt.com/p-4882384.html