一阶电路和二阶电路的时域分析.ppt
《一阶电路和二阶电路的时域分析.ppt》由会员分享,可在线阅读,更多相关《一阶电路和二阶电路的时域分析.ppt(170页珍藏版)》请在三一办公上搜索。
1、本章重点,一阶和二阶电路的零输入响应、零状态响应和全响应的概念及求解;,重点,一阶和二阶电路的阶跃响应概念及求解。,1.动态电路方程的建立及初始条件的确定;,返 回,含有动态元件电容和电感的电路称动态电路。,1.动态电路,7.1 动态电路的方程及其初始条件,当动态电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。,下 页,上 页,特点,返 回,例,过渡期为零,电阻电路,下 页,上 页,返 回,i=0,uC=Us,i=0,uC=0,k接通电源后很长时间,电容充电完毕,电路达到新的稳定状态:,k未动作前,电路处于稳定状态:,电容电路,下 页,上 页
2、,前一个稳定状态,过渡状态,新的稳定状态,?,有一过渡期,返 回,uL=0,i=Us/R,i=0,uL=0,k接通电源后很长时间,电路达到新的稳定状态,电感视为短路:,k未动作前,电路处于稳定状态:,电感电路,下 页,上 页,前一个稳定状态,过渡状态,新的稳定状态,?,有一过渡期,返 回,下 页,上 页,k未动作前,电路处于稳定状态:,uL=0,i=Us/R,k断开瞬间,i=0,uL=,工程实际中在切断电容或电感电路时会出现过电压和过电流现象。,注意,返 回,过渡过程产生的原因,电路内部含有储能元件 L、C,电路在换路时能量发生变化,而能量的储存和释放都需要一定的时间来完成。,电路结构、状态发
3、生变化,换路,下 页,上 页,返 回,应用KVL和电容的VCR得:,若以电流为变量:,2.动态电路的方程,下 页,上 页,例,RC电路,返 回,应用KVL和电感的VCR得:,若以电感电压为变量:,下 页,上 页,RL电路,返 回,一阶电路,下 页,上 页,结论,含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称一阶电路。,返 回,二阶电路,下 页,上 页,RLC电路,应用KVL和元件的VCR得:,含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称二阶电路。,返 回,一阶电路,一阶电路中只有一个动态元件,描述电路的方程是一阶线性微分方程。,描述动态电路的电路方程
4、为微分方程;,动态电路方程的阶数通常等于电路中动态元件的个数。,二阶电路,二阶电路中有二个动态元件,描述电路的方程是二阶线性微分方程。,下 页,上 页,结论,返 回,高阶电路,电路中有多个动态元件,描述电路的方程是高阶微分方程。,动态电路的分析方法,根据KVL、KCL和VCR建立微分方程;,下 页,上 页,返 回,复频域分析法,时域分析法,求解微分方程,本章采用,工程中高阶微分方程应用计算机辅助分析求解。,下 页,上 页,返 回,稳态分析和动态分析的区别,稳态,动态,下 页,上 页,直流时,返 回,t=0与t=0的概念,认为换路在t=0时刻进行,0 换路前一瞬间,0 换路后一瞬间,3.电路的初
5、始条件,初始条件为 t=0时u,i 及其各阶导数的值。,下 页,上 页,注意,0,0,t,返 回,图示为电容放电电路,电容原先带有电压Uo,求开关闭合后电容电压随时间的变化。,例,解,特征根方程:,通解:,代入初始条件得:,在动态电路分析中,初始条件是得到确定解答的必需条件。,下 页,上 页,明确,返 回,t=0+时刻,电容的初始条件,下 页,上 页,当i()为有限值时,返 回,q(0+)=q(0),uC(0+)=uC(0),换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。,电荷守恒,下 页,上 页,结论,返 回,电感的初始条件,t=0+时刻,下 页,上 页,当u为有限值
6、时,返 回,L(0)=L(0),iL(0)=iL(0),磁链守恒,换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前后保持不变。,下 页,上 页,结论,返 回,换路定律,电容电流和电感电压为有限值是换路定律成立的条件。,换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前后保持不变。,换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。,换路定律反映了能量不能跃变。,下 页,上 页,注意,返 回,电路初始值的确定,(2)由换路定律,uC(0+)=uC(0)=8V,(1)由0电路求 uC(0),uC(0)=8V,(3)由0+等效电路求 iC(0+),例1,求 iC
7、(0+),电容开路,下 页,上 页,电容用电压源替代,注意,返 回,iL(0+)=iL(0)=2A,例 2,t=0时闭合开关k,求 uL(0+),先求,应用换路定律:,电感用电流源替代,解,电感短路,下 页,上 页,由0+等效电路求 uL(0+),注意,返 回,求初始值的步骤:,1.由换路前电路(稳定状态)求uC(0)和iL(0);,2.由换路定律得 uC(0+)和 iL(0+)。,3.画0+等效电路。,4.由0+电路求所需各变量的0+值。,b.电容(电感)用电压源(电流源)替代。,a.换路后的电路,(取0+时刻值,方向与原假定的电容电压、电感电流方向相同)。,下 页,上 页,小结,返 回,i
8、L(0+)=iL(0)=iS,uC(0+)=uC(0)=RiS,uL(0+)=-RiS,求 iC(0+),uL(0+),例3,解,由0电路得:,下 页,上 页,由0+电路得:,返 回,例4,求k闭合瞬间各支路电流和电感电压,解,下 页,上 页,由0电路得:,由0+电路得:,返 回,求k闭合瞬间流过它的电流值,解,确定0值,给出0等效电路,下 页,上 页,例5,返 回,7.2 一阶电路的零输入响应,换路后外加激励为零,仅由动态元件初始储能产生的电压和电流。,1.RC电路的零输入响应,已知 uC(0)=U0,零输入响应,下 页,上 页,返 回,特征根,则,下 页,上 页,代入初始值 uC(0+)=
9、uC(0)=U0,A=U0,返 回,下 页,上 页,或,返 回,令=RC,称为一阶电路的时间常数,电压、电流是随时间按同一指数规律衰减的函数;,连续函数,跃变,响应与初始状态成线性关系,其衰减快慢与RC有关;,下 页,上 页,表明,返 回,时间常数 的大小反映了电路过渡过程时间的长短,=RC,大过渡过程时间长,小过渡过程时间短,电压初值一定:,R 大(C一定)i=u/R 放电电流小,C 大(R一定)W=Cu2/2 储能大,物理含义,下 页,上 页,返 回,a.:电容电压衰减到原来电压36.8%所需的时间。工程上认为,经过 35,过渡过程结束。,U0 0.368U0 0.135U0 0.05U0
10、 0.007U0,U0 U0 e-1 U0 e-2 U0 e-3 U0 e-5,下 页,上 页,注意,返 回,t2 t1,t1时刻曲线的斜率等于,次切距的长度,下 页,上 页,返 回,b.时间常数 的几何意义:,能量关系,电容不断释放能量被电阻吸收,直到全部消耗完毕.,设 uC(0+)=U0,电容放出能量:,电阻吸收(消耗)能量:,下 页,上 页,返 回,例1,图示电路中的电容原充有24V电压,求k闭合后,电容电压和各支路电流随时间变化的规律。,解,这是一个求一阶RC 零输入响应问题,有:,下 页,上 页,返 回,分流得:,下 页,上 页,返 回,下 页,上 页,例2,求:(1)图示电路k闭合
11、后各元件的电压和电流随时间变化的规律,(2)电容的初始储能和最终时刻的储能及电阻的耗能。,解,这是一个求一阶RC 零输入响应问题,有:,u(0+)=u(0)=20V,返 回,下 页,上 页,返 回,下 页,上 页,初始储能,最终储能,电阻耗能,返 回,2.RL电路的零输入响应,特征方程 Lp+R=0,特征根,代入初始值,A=iL(0+)=I0,下 页,上 页,返 回,连续函数,跃变,电压、电流是随时间按同一指数规律衰减的函数;,下 页,上 页,表明,返 回,响应与初始状态成线性关系,其衰减快慢与L/R有关;,下 页,上 页,时间常数 的大小反映了电路过渡过程时间的长短,L大 W=LiL2/2
12、起始能量大R小 P=Ri2 放电过程消耗能量小,大过渡过程时间长,小过渡过程时间短,物理含义,电流初值iL(0)一定:,返 回,能量关系,电感不断释放能量被电阻吸收,直到全部消耗完毕。,设 iL(0+)=I0,电感放出能量:,电阻吸收(消耗)能量:,下 页,上 页,返 回,iL(0+)=iL(0)=1 A,例1,t=0时,打开开关S,求uv,。电压表量程:50V,解,下 页,上 页,返 回,例2,t=0时,开关S由12,求电感电压和电流及开关两端电压u12。,解,下 页,上 页,返 回,下 页,上 页,返 回,一阶电路的零输入响应是由储能元件的初值引起的响应,都是由初始值衰减为零的指数衰减函数
13、。,下 页,上 页,小结,返 回,一阶电路的零输入响应和初始值成正比,称为零输入线性。,衰减快慢取决于时间常数,同一电路中所有响应具有相同的时间常数。,下 页,上 页,小结,=R C,=L/R,R为与动态元件相连的一端口电路的等效电阻。,RC电路,RL电路,返 回,动态元件初始能量为零,由t 0电路中外加激励作用所产生的响应。,方程:,7.3 一阶电路的零状态响应,解答形式为:,1.RC电路的零状态响应,零状态响应,非齐次方程特解,齐次方程通解,下 页,上 页,非齐次线性常微分方程,返 回,与输入激励的变化规律有关,为电路的稳态解,变化规律由电路参数和结构决定,的通解,的特解,下 页,上 页,
14、返 回,全解,uC(0+)=A+US=0,A=US,由初始条件 uC(0+)=0 定积分常数 A,下 页,上 页,从以上式子可以得出:,返 回,电压、电流是随时间按同一指数规律变化的函数;电容电压由两部分构成:,连续函数,跃变,稳态分量(强制分量),暂态分量(自由分量),下 页,上 页,表明,+,返 回,响应变化的快慢,由时间常数RC决定;大,充电慢,小充电就快。,响应与外加激励成线性关系;,能量关系,电容储存能量:,电源提供能量:,电阻消耗能量:,电源提供的能量一半消耗在电阻上,一半转换成电场能量储存在电容中。,下 页,上 页,表明,返 回,例,t=0时,开关S闭合,已知 uC(0)=0,求
15、(1)电容电压和电流,(2)uC80V时的充电时间t。,解,(1)这是一个RC电路零状态响应问题,有:,(2)设经过t1秒,uC80V,下 页,上 页,返 回,2.RL电路的零状态响应,已知iL(0)=0,电路方程为:,下 页,上 页,返 回,下 页,上 页,返 回,例1,t=0时,开关S打开,求t 0后iL、uL的变化规律。,解,这是RL电路零状态响应问题,先化简电路,有:,下 页,上 页,返 回,例2,t=0开关k打开,求t 0后iL、uL及电流源的电压。,解,这是RL电路零状态响应问题,先化简电路,有:,下 页,上 页,返 回,7.4 一阶电路的全响应,电路的初始状态不为零,同时又有外加
16、激励源作用时电路中产生的响应。,以RC电路为例,电路微分方程:,1.全响应,全响应,下 页,上 页,解答为:uC(t)=uC+uC,=RC,返 回,uC(0)=U0,uC(0+)=A+US=U0,A=U0-US,由初始值定A,下 页,上 页,强制分量(稳态解),自由分量(暂态解),返 回,2.全响应的两种分解方式,全响应=强制分量(稳态解)+自由分量(暂态解),着眼于电路的两种工作状态,物理概念清晰,下 页,上 页,返 回,全响应=零状态响应+零输入响应,着眼于因果关系,便于叠加计算,下 页,上 页,零输入响应,零状态响应,返 回,下 页,上 页,返 回,例1,t=0 时,开关k打开,求t 0
17、后的iL、uL。,解,这是RL电路全响应问题,有:,零输入响应:,零状态响应:,全响应:,下 页,上 页,返 回,或求出稳态分量:,全响应:,代入初值有:,62A,A=4,例2,t=0时,开关K闭合,求t 0后的iC、uC及电流源两端的电压。,解,这是RC电路全响应问题,有:,下 页,上 页,稳态分量:,返 回,下 页,上 页,全响应:,返 回,3.三要素法分析一阶电路,一阶电路的数学模型是一阶线性微分方程:,令 t=0+,其解答一般形式为:,下 页,上 页,特解,返 回,分析一阶电路问题转为求解电路的三个要素的问题。,用0+等效电路求解,用t的稳态电路求解,下 页,上 页,直流激励时:,注意
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一阶 电路 时域 分析
链接地址:https://www.31ppt.com/p-4878356.html