压电式加速度传感器资料.doc
《压电式加速度传感器资料.doc》由会员分享,可在线阅读,更多相关《压电式加速度传感器资料.doc(14页珍藏版)》请在三一办公上搜索。
1、 华东交通大学理工学院论文题目:压电式加速度传感器课 程:传感器原理及其应用 姓 名 ; 吕 进 专 业 : 通 信 工 程 班 级 : 12 通信2班 学 号 :20120210420243 华东交通大学理工学院压电式加速度传感器前言目前,国内研制的高冲击压电加速度传感器的性能受材料、结构、工艺和安装等因素的影响,量程和上限频率难以得到提高,从而导致在高冲击下测量的线性度较差。现在国内研制的压电传感器样机可测量的最大冲击加速度为1 OO,OOOg,安装谐振频率约为9.5kHz,线性度为10%,还不能完全满足工程使用的要求。因此,为了满足高速碰撞测试和常规触发引信用压电加速度传感器的要求,本文
2、研究提高压电加速度传感器的量程和频响的设计技术,这项技术可应用在钻地武器试验和深层钻地弹引信中。 在核武器飞行试验中,均要进行触地测试,了解核弹头碰地的状况,测量其触地加速度,为其触发引信的设计和验证提供依据。在常规钻地弹、侵彻弹等武器研究中,均需要大量程高频响的加速度传感器进行测量。目前国内的传感器难以满足要求,现采用国外的传感器(如7270A),但价格昂贵且对华禁运。 综上所述,本文研究提高压电传感器的量程和频响的设计技术,为改进压电加速度传感器的性能奠定基础,为高速触地用测试传感器和深侵彻引信传感器的研究提供技术参考。目 录前言1摘要3关键词3国内外现状3压电式加速度传感器原理4灵敏度8
3、误差形成因素分析9提高传感器频响的措施9实际应用11总结12参考文献12摘要二十一世纪的高效发展中,信息时代已然来临,掌握信息的重要性日益重要,在人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一随着社会的进步,科学技术的发展,特别是近20年来,电子技术日新月异,计算机的普及和应用把人类带到了信息时代,各种电器设备充满了人们生产和生活的各个领域,相当大一部分的电器设备都应用到了传感器件,传感器技术是现代信息技术中主要技术之一,在国民经济建设中占据有极其重要的地位。关键词传感器 原理 速度 光电效应光电元
4、件压电特性传感器分类传感器应用国内外现状自1880年J.居里和P.居里发现压电效应以来21,这种类型的压电传感器就广泛应用于各个领域。经过近半个世纪的发展,压电加速度传感器的材料、结构设计和工艺都有了很大的进步。这些对改善传感器的性能起到了至关重要的作用。 经过调研,了解到国外几种高冲击压电加速度传感器的主要技术指标,如表1.1所示。表1.1国外几种压电加速度传感器的主要技术指标公司名称 灵敏度(mv/g)频响(Hz)最大冲击加速度(g)Kistler 8743A10000.05 0.5一10k120, 000 (士1%)PCB 350B21 0.050.3一10k(t5%)100, 000E
5、NDEVC O2225MSA0.025 0.5一8k100, 000 压电材料性能的改进以及新型压电材料的研制成功极大地推动了压电传感器的进步。从最开始的石英到BaTi03压电陶瓷,错钦酸铅(PZT)压电陶瓷,再到压电聚合物如聚偏二氟乙烯(PVDF)等新型压电材料2l。压电材料制备工艺的进展对压电材料的应用及理论研究具有推动作用,单晶技术的进展培育了许多实用化的压电材料,薄膜工艺的进展为压电器件的平面化、集成化创造了条件。压电材料的这一系列进步为设计大量高性能的压电元件提供了技术保障。 压电加速度传感器由最初的基座压缩式结构形式,这种结构因易受外界环境影响,后演变为中心压缩型,然后又改进为性能
6、最佳的各种剪切型设计,如环形剪切型。虽然剪切型的各种性能优异,但是剪切型的结构决定了它不能承受较强的冲击。剪切型对工艺的要求很高,国外的研究机构(如B&K公司)对剪切型压电加速度传感器做了大量研究3。为了提高低频灵敏度,后来还研制了压电梁式加速度传感器。随着MEMS技术和微机械加工技术的发展,出现了可以把质量块、压电元件和基座做成一体的微小型压电传感器,可以把信号处理电路与传感器做在同一基片上的ICP传感器。大量程高频响的压电加速度传感器主要以中心压缩型为主,剪切型的极为罕见。国内在压电加速度传感器方面的研究起步较晚,且结构设计和工艺水平落后于国外。目前国内压电传感器的主要结构是中心压缩型,较
7、好的高冲击压电加速度传感器(中心压缩型)样机的主要技术指标为:最大冲击加速度I OO,OOOg,最高频响8kHz。在压电加速度传感器的研制方面,北戴河亿柏传感器技术研究所和西安204所做得较好。压电式加速度传感器原理压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。电荷输出压电加速度传感器,采用剪切和中心压缩结构形式。其原理利用压电晶体的电荷输出与所受的力成正比,而所受的力在敏感质量一定的情况下与加速度值成正比。在一定条件下
8、,压电晶体受力后产生的电荷量与所感受到的加速度值成正比。经过简化后的方程为: QdijF=dijMa (1) 式中:Q压电晶体输出的电荷。 dij压电晶体的二阶压电张量。 M传感器的敏感质量。 a所受的振动加速度值。 每只传感器中内装晶体元件的二阶压电张量是一定的,敏感质量M是一个常量,所以公式(1)说明压电加速度传感器产生的电荷量与振动加速度a成正比。这就是压电加速度传感器完成的机电转换的工作原理。 压电加速度传感器承受单位振动加速度值能输出电荷量的多少,称其为电荷灵敏度,单位为pC/ms-2或pC/g(1g9.8 ms-2)。 压电加速度传感器实质上相当于一个电荷源和一只电容器,通过等效电
9、路简化后,则可算出传感器的电压灵敏度为: SvSQ/Ca SV传感器电压灵敏度 mV/ms-2 SQ传感器的电荷灵敏度 pC/ms-2 Ca传感器的电容量 pF 压电加速度传感器在使用中最主要的三项指标为:a电荷灵敏度(或电压灵敏度)、b谐振频率(工作频率在谐振频率1/3以下)、c最大横向灵敏度比。由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。 为此,通常把传感器信号先输到高输入阻抗的前置放大器。经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示 仪表或记录器。 压电式加速度传感器构成元件(a)中心安装压缩型 (b)环形
10、剪切型 (c) 三角剪切型图13.18 压电式加速度计常用的压电式加速度计的结构形式如图13.18所示。S是弹簧,M是质块,B是基座,P是压电元件,R是夹持环。图13.18a是中央安 装压缩型,压电元件质量块弹簧系统装在圆形中心支柱上,支柱与基座连接。这种结构有高的共振频率。然而基座B与测试对 象连接时,如果基座B有变形则将直接影响拾振器输出。此外,测试对象和环境温度变化将影响压电元件,并使预紧力发生变化, 易引起温度漂移。图13.18c为三角剪切形,压电元件由夹持环将其夹牢在三角形中心柱上。加速度计感受轴向振动时,压电元件承 受切应力。这种结构对底座变形和温度变化有极好的隔离作用,有较高的共
11、振频率和良好的线性。图13.18b为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。压电式加速度传感器幅频特性图13.19 压电式加速度计的幅频特性曲线 加速度计的使用上限频率取决于幅频曲线中的共振频率图(图13.19)。一般小阻尼(z=0.1)的加速度计,上限频率若取为共振频率的 1/3,便可保证幅值误差低于1dB(即12%);若取为共振频率的1/5,则可保证幅值误差小于0.5dB(即6%),相移小于30。但共振频率与加速度计的固定状况有关,加速度计出厂时给出的幅频曲线是在刚性连接
12、的固定情况下得到的。实际使用的固定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。加速度计与试件的各种固定方法见 图13.20。图13.20 加速度计的固定方法其中图13.20a采用钢螺栓固定,是使共振频率能达到出厂共振频率的最好方法。螺栓不得全部拧入基座螺孔,以免引起基座 变形,影响加速度计的输出。在安装面上涂一层硅脂可增加不平整安装表面的连接可靠性。需要绝缘时可用绝缘螺栓和云母垫片来 固定加速度计(图13.20b),但垫圈应尽量簿。用一层簿蜡把加速度计粘在试件平整表面上(图13.20c),也可用于低温(40以下)的场合。手持探针测振方法(图13.20d)在多点测试时使用特
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压电 加速度 传感器 资料
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4877315.html