电气化与自动化专业毕业设计论文外文资料翻译.doc
《电气化与自动化专业毕业设计论文外文资料翻译.doc》由会员分享,可在线阅读,更多相关《电气化与自动化专业毕业设计论文外文资料翻译.doc(15页珍藏版)》请在三一办公上搜索。
1、毕业设计(论文)外文资料翻译 系别: 电气工程系 专业: 电气化与自动化 班级: 姓名: 学号: 外文出处: Specialized English For Architectural Electric Engineering and Automation 附 件:1、外文原文;2、外文资料翻译译文。指导教师评语:签字: 年 月 日注:请将该封面与附件装订成册。1、 外文原文Introductions to temperature controland PID controllersProcess control system. Automatic process control is con
2、cerned with maintaining process variables temperatures pressures flows compositions, and the like at some desired operation value. Processes are dynamic in nature. Changes are always occurring, and if actions are not taken, the important process variables-those related to safety, product quality, an
3、d production rates-will not achieve design conditions. In order to fix ideas, let us consider a heat exchanger in which a process stream is heated by condensing steam. The process is sketched in Fig.1 Fig. 1 Heat exchanger The purpose of this unit is to heat the process fluid from some inlet tempera
4、ture, Ti(t), up to a certain desired outlet temperature, T(t). As mentioned, the heating medium is condensing steam. The energy gained by the process fluid is equal to the heat released by the steam, provided there are no heat losses to surroundings, iii that is, the heat exchanger and piping are we
5、ll insulated. In this process there are many variables that can change, causing the outlet temperature to deviate from its desired value. 21 If this happens, some action must be taken to correct for this deviation. That is, the objective is to control the outlet process temperature to maintain its d
6、esired value. One way to accomplish this objective is by first measuring the temperature T(t) , then comparing it to its desired value, and, based on this comparison, deciding what to do to correct for any deviation. The flow of steam can be used to correct for the deviation. This is, if the tempera
7、ture is above its desired value, then the steam valve can be throttled back to cut the stearr flow (energy) to the heat exchanger. If the temperature is below its desired value, then the steam valve could be opened some more to increase the steam flow (energy) to the exchanger. All of these can be d
8、one manually by the operator, and since the procedure is fairly straightforward, it should present no problem. However, since in most process plants there are hundreds of variables that must be maintained at some desired value, this correction procedure would required a tremendous number of operator
9、s. Consequently, we would like to accomplish this control automatically. That is, we want to have instnnnents that control the variables wJtbom requ)ring intervention from the operator. (si This is what we mean by automatic process control. To accomplish his objective a control system must be design
10、ed and implemented. A possible control system and its basic components are shown in Fig.2.Fig. 2 Heat exchanger control loopThe first thing to do is to measure the outlet temperaVare of the process stream. A sensor (thermocouple, thermistors, etc) does this. This sensor is connected physically to a
11、transmitter, which takes the output from the sensor and converts it to a signal strong enough to be transmitter to a controller. The controller then receives the signal, which is related to the temperature, and compares it with desired value. Depending on this comparison, the controller decides what
12、 to do to maintain the temperature at its desired value. Base on this decision, the controller then sends another signal to final control element, which in turn manipulates the steam flow.The preceding paragraph presents the four basic components of all control systems. They are (1) sensor, also oft
13、en called the primary element. (2) transmitter, also called the secondary element. (3) controller, the brain of the control system. (4) final control system, often a control valve but not always. Other common final control elements are variable speed pumps, conveyors, and electric motors. The import
14、ance of these components is that they perform the three basic operations that must be present in every control system. These operations are (1) Measurement (M) : Measuring the variable to be controlled is usually done by the combination of sensor and transmitter. (2) Decision (D): Based on the measu
15、rement, the controller must then decide what to do to maintain the variable at its desired value. (3) Action (A): As a result of the controllers decision, the system must then take an action. This is usually accomplished by the final control element. As mentioned, these three operations, M, D, and A
16、, must be present in every control system. PID controllers can be stand-alone controllers (also called single loop controllers), controllers in PLCs, embedded controllers, or software in Visual Basic or C# computer programs. PID controllers are process controllers with the following characteristics:
17、 Continuous process control Analog input (also known as measuremem or Process Variable or PV) Analog output (referred to simply as output) Setpoint (SP) Proportional (P), Integral (I), and/or Derivative (D) constants Examples of continuous process control are temperature, pressure, flow, and level c
18、ontrol. For example, controlling the heating of a tank. For simple control, you have two temperature limit sensors (one low and one high) and then switch the heater on when the low temperature limit sensor tums on and then mm the heater off when the temperature rises to the high temperature limit se
19、nsor. This is similar to most home air conditioning & heating thermostats. In contrast, the PID controller would receive input as the actual temperature and control a valve that regulates the flow of gas to the heater. The PID controller automatically finds the correct (constant) flow of gas to the
20、heater that keeps the temperature steady at the setpoint. Instead of the temperature bouncing back and forth between two points, the temperature is held steady. If the setpoint is lowered, then the PID controller automatically reduces the amount of gas flowing to the heater. If the setpoint is raise
21、d, then the PID controller automatically increases the amount of gas flowing to the heater. Likewise the PID controller would automatically for hot, sunny days (when it is hotter outside the heater) and for cold, cloudy days. The analog input (measurement) is called the process variable or PV. You w
22、ant the PV to be a highly accurate indication of the process parameter you are trying to control. For example, if you want to maintain a temperature of + or - one degree then we typically strive for at least ten times that or one-tenth of a degree. If the analog input is a 12 bit analog input and th
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电气化 自动化 专业 毕业设计 论文 外文 资料 翻译
链接地址:https://www.31ppt.com/p-4873353.html