毕业设计论文基于单片机的超声波汽车防撞测距报警系统.doc
《毕业设计论文基于单片机的超声波汽车防撞测距报警系统.doc》由会员分享,可在线阅读,更多相关《毕业设计论文基于单片机的超声波汽车防撞测距报警系统.doc(34页珍藏版)》请在三一办公上搜索。
1、毕业论文课题: 汽车防碰撞报警系统 摘 要论文介绍了一种基于单片机的超声波汽车防撞测距报警系统,此系统利用AT89S52单片机作为主控制器,结合超声波测距原理,来实现智能汽车防撞测距报警功能,并进行了系统硬件和软件的设计。通过多种发射接收电路设计方案比较,得出了最佳的设计方案,并对系统各个单元的原理进行了介绍。对组成的各系统电路的芯片进行了介绍,并阐述了它们的工作原理。此系统具有结构简单,精度高,使用方便等特点。介绍了系统软件结构,通过编程来实现系统功能。AbstractPaper describes a microcontroller-based ultrasonic ranging aut
2、omotive anti-collision warning system, this system uses AT89S52 microcontroller as the main controller, combined with ultrasonic distance measurement principle, to achieve the smart car crash ranging alarm, and make the system hardware and software design. Through a variety of transmitting and recei
3、ving circuit design compared to arrive at the best design, and system the principle of each unit are described. Circuit composed of the various systems on a chip was introduced, and explained how they work. This system has a simple structure, high precision, easy to use and so on. Describes the syst
4、em software architecture, programmed to achieve system functionality.目 录摘 要IAbstractI目 录II第1章 绪论11.1 背景11.1.1 超声波测距发展综述11.2 研究内容2第2章 超声波测距原理及构想32.1 超声波传感器介绍32.1.1 超声波传感器的特性42.2超声波测距的原理52.3系统设计原理52.4系统主要参数72.4.1 测距仪的工作频率72.4.2声速72.4.3 发射脉冲宽度72.4.4 测量盲区7第3章 超声波测距系统方案设计93.1 发射与接收电路的设计方案93.2 显示报警单元方案设计1
5、03.2.1系统报警电路设计113.3 单片机复位电路113.4 时钟电路123.5 温度补偿电路133.6 74HC04N芯片介绍143.7 探头介绍14第4章 系统软件结构15第5章 结论175.1 误差产生原因分析185.1.1 温度对超声波声速的影响185.2 针对误差产生原因的系统改进方案19致 谢21参考文献22附录1 原理图24附录2源代码25附录3 电子器件列表清单4- 29 -第1章 绪论1.1 背景随着社会经济的发展,交通运输业日益兴旺,汽车的数量在大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失,针对这种情况,设计一种响应快,可靠性高
6、且较为经济的汽车防撞报警系统势在必行,超声波测距法是最常见的一种距离测距方法,应用于汽车的前后左右防撞的近距离,低速状况,以及在汽车防撞报警系统中,超声波作为一种特殊的声波,同样具有声波传输的基本物理特性折射,反射,干涉,衍射,散射。汽车防撞报警器将单片机的实时控制及数据处理功能,与超声波的测距技术、传感器技术相结合,可检测汽车运行中后方障碍物与汽车的距离及汽车车速,通过数显装置显示距离,并由发声电路根据距离远近情况发出警告声。1.1.1 超声波测距发展综述五十年代,我国开始从国外引进超声波仪器,多是笨重的电子管式仪器。如英国的 UCT-2 超声波检测仪,重达 24Kg,各单位积极开展试验研究
7、工作,在一些工程检测中取得了较好的效果。五十年代末六十年代初,国内科研单位进口了波兰产超声仪,并进行仿制生产。随后,上海同济大学研制出 CTS-10 型非金属超声检测仪,也是电子管式,仪器重约20Kg。该仪器性能稳定,波形清晰。但当时这种仪器只有个别科研单位使用,建工部门使用不多。直至七十年代中期,因无损检测技术仍处于试验阶段,未推广普及,所以仪器没有多大发展,仍使用电子管式的 UCT-2,CTS-10 型仪器。八十年代后期,由于计算机技术和高速器件的不断发展,使超声波信号的数字化采集和分析成为可能。目前国内也相继出现了各类数字化超声波检测设备,并已成为超声波检测的发展方向。厦门大学的某位学者
8、研究了一种回波轮廓分析法。该方法在测距中通过两次探测求取回波包络曲线来得到回波的起点,通过这样处理后超声波传播时间的精度得到了很大的提高。意大利的Carullo等人介绍了一种自适应系统,采用特殊的发射波形来获得好的回波包络,同时采用对环境噪声进行估测,设置一定的回波开平电路,且采用自动增益的控制放大器,通过这些措施来提高超声波的探测精度。目前国内外在超声波检测领域都向着数字化方向发展,数字式超声波检测仪器的发展速度很快。国内近几年也相继出现了许多数字式超声波仪器和分析系统。国际上对超声波检测数字化技术的研究非常重视,国外生产类似产品和研究的公司有美国的泛美(PANAMETRICS)公司、MET
9、EC公司,加拿大的R/D TECH公司,德国的K-K公司、法国的SOFRATEST公司和西班牙的TECNATOM公司等等,上述这些公司生产的超声波检测采集、分析和成像处理系统的技术水平较高,在世界上处于领先水平。随着检测技术研究的不断深入,对超声检测仪器的功能要求越来越高,单数码显示的超声检测仪测读会带来较大的测试误差。进一步要求以后生产的超声仪能够具有双显及内带有单板机的微处理功能。随后具有检测,记录,存储,数据处理与分析等多项功能的智能化检测分析仪相继研制成功。超声仪研制呈现一派繁荣景象。其中,煤炭科学研究院研制的 2000A 型超声分析检测仪,与国内同类产品相比,设计新颖合理,功能齐全,
10、在仪器设计上有重大突破和创新,达到了国际先进水平。目前,计算机市场价格大幅度下降,采用非一体化超声波检测仪器,计算机可发挥它一机多用的各种功能,实际上是最大的节约。过去那种全功能的仪器设置,还不如单独的超声仪,计算机可充分发挥各自特点。高智能化检测仪器只能满足检测条件,使用环境,重复性测试内容等基本情况一样,才可充分发挥其特有功能。仪器设计也应从实际情况出发,才能满足用户的要求。综上所述,我国超声波仪器的研制与生产,有较大发展,有的型号已超过国外同类仪器水平。1.2 研究内容本论文章节安排如下:第一章绪论部分主要介绍了超声波的发展状况,以及目前的现状和前景。第二章超声波测距原理及构想主要介绍了
11、超声波传感器,超声波测距的原理及超声测距系统的总体方案,系统主要参数。第三章超声波测距系统各组成单元方案设计(包括发射接收电路设计、显示电路设计、报警电路设计、时钟电路设计、复位电路设计等)。并详细介绍了最终确定的各单元设计方案以及最终方案的设计原理及具体实现。第四章系统硬件软件实现部分主要介绍了软件的实现。第五章给出系统的误差分析和系统改进。 第2章 超声波测距原理及构想2.1 超声波传感器介绍超声波由于其指向性强、能量消耗缓慢、传播距离较远等优点,而经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如液位、井深、
12、管道长度等场合。超声传感器是一种将其他形式的能转变为所需频率的超声能或是把超声能转变为同频率的其他形式的能的器件。目前常用的超声传感器有两大类,即电声型与流体动力型。电声型主要有:1 压电传感器;2 磁致伸缩传感器;3 静电传感器。流体动力型中包括有气体与液体两种类型的哨笛。由于工作频率与应用目的不同,超声传感器的结构形式是多种多样的,并且名称也有不同,例如在超声检测和诊断中习惯上都把超声传感器称作探头,而工业中采用的流体动力型传感器称为“哨”或“笛”。传感器的主要组成部分是压电晶片。当压电晶片受发射电脉冲激励后产生振动,即可发射声脉冲,是逆压电效应。当超声波作用于晶片时,晶片受迫振动引起的形
13、变可转换成相应的电信号,是正压电效应。前者用于超声波的发射,后者即为超声波的接收。超声波传感器一般采用双压电陶瓷晶片制成。压电式超声波传感器结构如图2-1所示:图2-1压电式超声波传感器结构图压电陶瓷晶片有一个固定的谐振频率,即中心频率 f0。发射超声波时,加在其上面的交变电压的频率要与它的固有谐振频率一致。这样,超声传感器才有较高的灵敏度。当所用压电材料不变时,改变压电陶瓷晶片的几何尺寸,就可非常方便的改变其固有谐振频率。利用这一特性可制成各种频率的超声传感器。超声波传感器的内部结构由压电陶瓷晶片、锥形辐射喇叭、底座、引线、金属壳及金属网构成,其中,压电陶瓷晶片是传感器的核心,锥形辐射喇叭使
14、发射和接收超声波能量集中,并使传感器有一定的指向角,金属壳可防止外界力量对压电陶瓷晶片及锥形辐射喇叭的损坏。金属网也是起保护作用的,但不影响发射与接收超声波。2.1.1 超声波传感器的特性超声波传感器的基本特性有频率特性和指向特性,这里以TCT40-16T/R发射型超声波传感器为例进行说明。一、频率特性图2-2超声发射传感器频率特性图 2-2是超声波发射传感器的频率特性曲线。其中,f040KHz 为超声发射传感器的中心频率,在 f0处,超声发射传感器所产生的超声机械波最强,也就是说在 f0处所产生的超声声压能级最高。而在 f0两侧,声压能级迅速衰减。因此,超声波发射传感器一定要使用非常接近中心
15、频率 f0的交流电压来激励。另外,超声波接收传感器的频率特性与发射传感器的频率特性类似。曲线在 f0处曲线最尖锐,输出电信号的幅度最大,即在 f0处接收灵敏度最高。因此,超声波接收传感器具有很好的频率选择特性。超声波接收传感器的频率特性曲线和输出端外接电阻R 也有很大关系,如果 R 很大,频率特性是尖锐共振的,并且在这个共振频率上灵敏度很高。如果 R 较小,频率特性变得光滑而具有较宽得带宽,同时灵敏度也随之降低。并且最大灵敏度向稍低的频率移动。因此,超声接收传感器应与输入阻抗高的前置放大器配合使用,才能有较高得接收灵敏度。二、指向特性实际的超声波传感器中的压电晶片是一个小圆片,可以把表面上每个
16、点看成一个振荡源,辐射出一个半球面波(子波),这些子波没有指向性。但离开超声传感器的空间某一点的声压是这些子波迭加的结果(衍射),却有指向性。2.2超声波测距的原理超声测距从原理上可分为共振式、脉冲反射式两种。由于应用要求限定,在这里使用脉冲反射式,即利用超声的反射特性。超声波测距原理是通过超声波发射传感器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就停止计时。常温下超声波在空气中的传播速度为 C=340m/s,根据计时器记录的时间 t,就可以计算出发射点距障碍物的距离(S),即:S=C*t/2=C*t0 (2-1)其中
17、,t0就是所谓的渡越时间。可以看出主要部分有: (1) 供应电能的脉冲发生器(发射电路);(2) 转换电能为声能,且将声能透射到介质中的发射传感器;(3) 接收反射声能(回波)和转换声能为电信号的接收传感器;(4) 接收放大器,可以使微弱的回声放大到一定幅度,并使回声激发记录设备;(5) 记录/控制设备,通常控制发射到传感器中的电能,并控制声能脉冲发射到记录回波的时间,存储所要求的数据,并将时间间隔转换成距离。在超声波测量系统中,频率取得太低,外界的杂音干扰较多;频率取得太高,在传播的过程中衰减较大。故在超声波测量中,常使用 40KHz 的超声波。目前超声波测量的距离一般为几米到几十米,是一种
18、适合室内测量的方式。由于超声波发射与接收器件具有固有的频率特性,具有很高的抗干扰性能。距离测量系统常用的频率范围为 25KHz300KHz 的脉冲压力波,发射和接收的传感器有时共用一个,或者两个是分开使用的。发射电路一般由振荡和功放两部分组成,负责向传感器输出一个有一定宽度的高压脉冲串,并由传感器转换成声能发射出去;接收放大器用于放大回声信号以便记录,同时为了使它能接收具有一定频带宽度的短脉冲信号,接收放大器要有足够的频带宽度;置避开强大记录/控制部分启动或关闭发射电路并记录发射的瞬时及接收的瞬时,并将时差换算成距离读数并加以显示或记录。2.3系统设计原理系统结构如图 2-3所示:电子市场上常
19、见的超声探头是收发分体式,一般频率为 40KHz。如果需要更高频率的超声探头,比如几百赫兹或者几兆赫兹的频率,就需要到专业经营超声产品的厂商去购买或者定制。鉴于有限的条件,拟选用的探头是 40KHz 的超声传感器,有一支接收传感器TCT40-16R和一支发射传感器TCT40-16T 。 图2-3 超声波测距电路图电路频率的选择应该满足发射传感器的固有频率 40KHz,这样才能使其工作在谐振频率,达到最优的特性。发射电压从理论上说是越高越好,因为对同一支发射传感器而言,电压越高,发射的超声功率就越大,这样能够在接收传感器上接收的回波功率就比较大,对于接收电路的设计就相对简单一些。但是,每一支实际
20、的发射传感器有其工作电压的极限值,即当工作电压超过了这个极限值之后,会对传感器的内部电路造成不可回复的损害。因此,工作电压不能超过这个极限值。同时,发射电路中的阻尼电阻决定了电路的阻尼情况。通常采用改变阻尼电阻的方法来改变发射强度。电阻大时阻尼小,发射强度大,仪器分辨率低,适宜于探测厚度大,对分辨力要求不高的试件。电阻小时阻尼大,分辨率高,在探测近表面缺陷时或对分辨力有较高要求时应予采用。发射部分的点脉冲电压很高,但是由障碍物回波引起的压电晶片产生的射频电压不过几十毫伏,要对这样小的信号进行处理就必须放大到一定的幅度。接收部分就是由二级放大电路,检波电路及门限判别电路构成的,其中包括杂波抑制电
21、路。最终达到对回波进行放大检测,产生一个单片机能够识别的中断信号作为回波到达的标志。但是由于超声传感器固有特性,即盲区的存在,对于回波的接收和处理造成了相当程度的影响。2.4系统主要参数2.4.1 测距仪的工作频率由文献知,空气中超声波的衰减系数为=as=Af2+Bf4。所以,空气中超声波的衰减对频率很敏感,要求合理选择超声波频率,一般在 40KHz 左右。太高频率的超声波在空气中是无法传播开去的。传感器的工作频率是测距系统的主要技术参数,它直接影响超声波的扩散和吸收损失,障碍物反射损失,背景噪声,并直接决定传感器的尺寸。工作频率的确定主要基于以下几点考虑:(1) 如果测距的能力要求很大,声波
22、传播损失就相对增加,由于介质对声波的吸收与声波频率的平方成正比,为减小声波的传播损失,就必须降低工作频率。(2) 工作频率越高,对相同尺寸的换能器来说,传感器的方向性越尖锐,测量障碍物复杂表面越准,而且波长短,尺寸分辨率高,“细节”容易辨识清楚,因此从测量复杂障碍物表面和测量精度来看,工作频率要求提高。(3) 从传感器设计角度看,工作频率越低,传感器尺寸就越大,制造和安装就越困难。综上所述,由于本测距仪最大测量量程不大,因而选择测距仪工作频率在 40KHz。这样传感器方向性尖锐,且避开了噪声,提高了信噪比;虽然传播损失相对低频有所增加,但不会给发射和接收带来困难。2.4.2声速声速的精确程度线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 基于 单片机 超声波 汽车 测距 报警 系统
链接地址:https://www.31ppt.com/p-4873207.html